Optimization of an innovative approach involving mechanical activation and acid digestion for the extraction of lithium from lepidolite

Nathália Vieceli , Carlos A. Nogueira , Manuel F. C. Pereira , Fernando O. Durão , Carlos Guimarães , Fernanda Margarido

International Journal of Minerals, Metallurgy, and Materials ›› 2018, Vol. 25 ›› Issue (1) : 11 -19.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2018, Vol. 25 ›› Issue (1) : 11 -19. DOI: 10.1007/s12613-018-1541-7
Article

Optimization of an innovative approach involving mechanical activation and acid digestion for the extraction of lithium from lepidolite

Author information +
History +
PDF

Abstract

The recovery of lithium from hard rock minerals has received increased attention given the high demand for this element. Therefore, this study optimized an innovative process, which does not require a high-temperature calcination step, for lithium extraction from lepidolite. Mechanical activation and acid digestion were suggested as crucial process parameters, and experimental design and response-surface methodology were applied to model and optimize the proposed lithium extraction process. The promoting effect of amorphization and the formation of lithium sulfate hydrate on lithium extraction yield were assessed. Several factor combinations led to extraction yields that exceeded 90%, indicating that the proposed process is an effective approach for lithium recovery.

Keywords

lepidolite / lithium / mechanical activation / acid digestion / optimization / extraction

Cite this article

Download citation ▾
Nathália Vieceli, Carlos A. Nogueira, Manuel F. C. Pereira, Fernando O. Durão, Carlos Guimarães, Fernanda Margarido. Optimization of an innovative approach involving mechanical activation and acid digestion for the extraction of lithium from lepidolite. International Journal of Minerals, Metallurgy, and Materials, 2018, 25(1): 11-19 DOI:10.1007/s12613-018-1541-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Hien-Dinh T.T., Luong V.T., Gieré R., Tran T. Extraction of lithium from lepidolite via iron sulphide roasting and water leaching. Hydrometallurgy, 2015, 153, 154.

[2]

Luong V.T., Kang D.G., An J.W., Kim J.M., Tran T. Factors affecting the extraction of lithium from lepidolite. Hydrometallurgy, 2013, 134-135, 54.

[3]

Luong V.T., Kang D.J., An J.W., Dao D.A., Kim M.J., Tran T. Iron sulphate roasting for extraction of lithium from lepidolite. Hydrometallurgy, 2014, 141, 8.

[4]

Yan Q., Li X., Yin Z., Wang Z., Guo U., Peng W., Hu Q. A novel process for extracting lithium from lepidolite. Hydrometallurgy, 2012, 121-124, 54.

[5]

Yan Q., Li X., Wang Z., Wu X., Guo H., Hu Q., Peng W., Wang J. Extraction of valuable metals from lepidolite. Hydrometallurgy, 2012, 117-118, 116.

[6]

Yan Q., Li X., Wang Z., Wu X., Wang J., Guo H., Hu Q., Peng W. Extraction of lithium from lepidolite by sulfation roasting and water leaching. Int. J. Miner. Process., 2012, 110-111, 1.

[7]

Yan Q., Li X., Wang Z., Wang J., Guo H., Hu Q., Peng W., Wu X. Extraction of lithium from lepidolite using chlorination roasting−water leaching process. Trans. Nonferrous Met. Soc. China, 2012, 22, 1753.

[8]

Kondás J., Jandová J. Lithium extraction from zinnwaldite wastes after gravity dressing of Sn-W ores. Acta Metall. Slovaca, 2006, 12, 197.

[9]

Jandová J., Vu H.N., Belková T., Dvorák P., Kondás J. Obtaining Li2CO3 from zinnwaldite wastes. Ceram. Silik., 2009, 53(2): 108.

[10]

Vu H., Bernardi J., Jandová J., Vaculíková L., Goliáš V. Lithium and rubidium extraction from zinnwaldite by alkali digestion process: Sintering mechanism and leaching kinetics. Int. J. Miner. Process., 2013, 123, 9.

[11]

Jandová J., Dvorak P., H.N Vu Processing of zinnwaldite waste to obtain Li2CO3. Hydrometallurgy, 2010, 103, 12.

[12]

Sitando O., Crouse P.L. Processing of a Zimbabwean petalite to obtain lithium carbonate. Int. J. Miner. Process., 2012, 102-103, 45.

[13]

Barbosa L.I., Valente G., Orosco R.P., González J.A. Lithium extraction from β-spodumene through chlorination with chlorine gas. Miner. Eng., 2014, 56, 29.

[14]

Siame E., Pascoe R.D. Extraction of lithium from micaceous waste from china clay production. Miner. Eng., 2011, 24, 1595.

[15]

Vieceli N., Nogueira C.A., Pereira M.F.C., Durão F.O., Guimarães C., Margarido F. Optimization of lithium extraction from lepidolite by roasting using sodium and calcium sulfates. Miner. Process. Extr. Metall. Rev., 2017, 38(1): 62.

[16]

Vieceli N., Nogueira C.A., Pereira M.F.C., Dias A.P.S., Durão F.O., Guimarães C., Margarido F. Effects of mechanical activation on lithium extraction from a lepidolite ore concentrate. Miner. Eng., 2017, 102, 1.

[17]

TEMA Machinery Ltd., Laboratory Disc Mill [2016-08-01]. http://www.tema.co.uk/products/tema-mill/laboratory-disc-mill.

[18]

Montgomery D.C. Design and Analysis of Experiments, 2012 752.

[19]

Met-Chem Canada Inc. Feasibility Study on the Whabouchi Lithium Deposit and Hydromet Plant, 2014

[20]

Mustafa T.N.A.S.T., Munusamy S.R.R., Lan D.N.U., Yunos N.F.M. Physical and structural transformations of Perlis carbonate rocks via mechanical activation route. Procedia Chem., 2016, 19, 673.

[21]

Baláž P. Mechanochemistry in Nanoscience and Minerals Engineering, 2008 413.

AI Summary AI Mindmap
PDF

126

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/