CuCrW(Al2O3) nanocomposite: mechanical alloying, microstructure, and tribological properties

Mohammad Baghani , Mahmood Aliofkhazraei

International Journal of Minerals, Metallurgy, and Materials ›› 2017, Vol. 24 ›› Issue (11) : 1321 -1334.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2017, Vol. 24 ›› Issue (11) : 1321 -1334. DOI: 10.1007/s12613-017-1524-0
Article

CuCrW(Al2O3) nanocomposite: mechanical alloying, microstructure, and tribological properties

Author information +
History +
PDF

Abstract

The effect of alumina nanoparticle addition on the microstructure and tribological properties of a CuCrW alloy was investigated in this work. Mechanical alloying was carried out in a satellite ball mill. The tribological properties of the samples were evaluated using pin-on-disk wear tests with different pins (alumina, tungsten carbide, and steel pins). The results indicated that the tungsten carbide pin had a lower coefficient of friction than the alumina and steel pins because of its high hardness and low surface roughness. In addition, when the sliding rate was decreased, the weight-loss rate increased. The existence of alumina nanoparticles in the nanocomposite led to a lower weight-loss rate and to a change in the wear mechanism from adhesive to abrasive.

Keywords

wear / mechanical alloying / nanocomposite / tribological properties / metal matrix

Cite this article

Download citation ▾
Mohammad Baghani, Mahmood Aliofkhazraei. CuCrW(Al2O3) nanocomposite: mechanical alloying, microstructure, and tribological properties. International Journal of Minerals, Metallurgy, and Materials, 2017, 24(11): 1321-1334 DOI:10.1007/s12613-017-1524-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Davis J.R. Copper and Copper Alloys, 2001, Ohio, ASM International 246.

[2]

Ma E. Alloys created between immiscible elements. Prog. Mater. Sci., 2005, 50(4): 413.

[3]

Zhang C.Y., Yang Z.M., Wang Y.P., Ding B.J., Guo Y. Preparation of CuCr25 contact materials by vacuum induction melting. J. Mater. Process. Technol., 2006, 178(1-3): 283.

[4]

Bizjak M., Karpe B., Jakša G., Kovač J. Surface precipitation of chromium in rapidly solidified Cu–Cr alloys. Appl. Surf. Sci., 2013, 277, 83.

[5]

Gao J., Wang Y.P., Zhou Z.M., Kolbe M. Phase separation in undercooled Cu–Cr melts. Mater. Sci. Eng. A, 2007, 449-451, 654.

[6]

Zhao Q., Shao Z.B., Liu C.J., Jiang M.F., Li X.T., Zevenhoven R., Saxén H. Preparation of Cu–Cr alloy powder by mechanical alloying. J. Alloys Compd., 2014, 607, 118.

[7]

Fang Q., Kang Z.X. An investigation on morphology and structure of Cu–Cr alloy powders prepared by mechanical milling and alloying. Powder Technol., 2015, 270, 104.

[8]

Aguilar C., Guzmán D., Castro F., Martínez V., de las Cuevas F., Lascano S., Muthiah T. Fabrication of nanocrystalline alloys Cu–Cr–Mo super satured solid solution by mechanical alloying. Mater. Chem. Phys., 2014, 146(3): 493.

[9]

Sheibani S., Heshmati-Manesh S., Ataie A. Influence of Al2O3 nanoparticles on solubility extension of Cr in Cu by mechanical alloying. Acta Mater., 2010, 58(20): 6828.

[10]

Yang X.H., Fan Z.K., Liang S.H., Xiao P. Effects of TiC on microstructures and properties of CuW electrical contact materials. Rare Met. Mater. Eng., 2007, 36(5): 817.

[11]

Yang X., Fan Z., Liang S., Xiao P. Effects of Y2O3 on properties of Cu−W electrical contact materials. Chin. J. Mater. Res., 2007, 21(4): 414.

[12]

Bacal P., Indyka P., Stojek Z., Donten M. Unusual example of induced codeposition of tungsten. Galvanic formation of Cu–W alloy. Electrochem. Commun., 2015, 54, 28.

[13]

Raghu T., Sundaresan R., Ramakrishnan P., Rama Mohan T.R. Synthesis of nanocrystalline copper–tungsten alloys by mechanical alloying. Mater. Sci. Eng. A, 2001, 304-306, 438.

[14]

Xu L., Yan M., Xia Y., Peng J.H., Li W., Zhang L.B., Liu C.H., Chen G., Li Y. Influence of copper content on the property of Cu–W alloy prepared by microwave vacuum infiltration sintering. J. Alloys Compd., 2014, 592, 202.

[15]

Ying D.Y., Zhang D.L. Processing of Cu–Al2O3 metal matrix nanocomposite materials by using high energy ball milling. Mater. Sci. Eng. A, 2000, 286(1): 152.

[16]

Raju L.S., Kumar A. A novel approach for fabrication of Cu−Al2O3 surface composites by friction stir processing. Procedia Mater. Sci., 2014, 5, 434.

[17]

Haynes W.M. CRC Handbook of Chemistry and Physics, 2014, Florida, CRC Press 251.

[18]

Cullity B.D. Elements of X-ray Diffraction, 1978, 2, Boston, Adisson-Wesley Publishing 368.

[19]

Klung H.P., Alexander L.E. X-ray Diffraction Procedures, 1962, New York, Willey 491.

[20]

Eckert J., Holzer J.C., Krill C.E., Johnson W.L. Reversible grain size changes in ball-milled nanocrystalline Fe–Cu alloys. J. Mater. Res., 1992, 7(8): 1980.

[21]

Mukhopadhyay N.K., Mukherjee D., Bera S., Manna I., Manna R. Synthesis and characterization of nano-structured Cu–Zn γ-brass alloy. Mater. Sci. Eng. A, 2008, 485(1-2): 673.

[22]

L., Lai M.O. Mechanical Alloying, 2013, Berlin, Springer Science & Business Media 346.

[23]

Ritasalo R., Liua X.W., Söderberg O., Keski-Honkola A., Pitkänen V., Hannula S.P. The microstructural effects on the mechanical and thermal properties of pulsed electric current sintered Cu−Al2O3 composites. Procedia Eng., 2011, 10, 124.

[24]

Cho D.G., Yang S.K., Yun J.C., Kim H.S., Lee J.S., Lee C.S. Effect of sintering profile on densification of nano-sized Ni/Al2O3 composite. Composites Part B, 2013, 45(1): 159.

[25]

Harris P.J.F. Growth and structure of supported metal catalyst particles. Int. Mater. Rev., 1995, 40(3): 97.

[26]

German R.M. Sintering Theory and Practice, 1996, New York, Wiley-VCH 568.

[27]

German R.M. Powder Metallurgy and Particulate Materials Processing: the Processes, Materials, Products, Properties, and Applications, 2005, Princeton, Metal Powder Industries Federation 122.

[28]

Korać M., Kamberović Anđić Z., Filipović M., Tasić M. Sintered materials based on copper and alumina powders synthesized by a novel method. Sci. Sinter., 2010, 42(1): 81.

[29]

Ryu S.H., Park J.H., Lee C.S., Lee J.C., Ahn S.H., Oh S.T. Experimental measurement of coefficient of thermal expansion for graded layers in Ni−Al2O3 FGM joints for accurate residual stress analysis. Mater. Trans., 2009, 50(6): 1553.

[30]

Hussain Z., Koay H.K. Studies on alumina dispersion-strengthened copper composites through ball milling and mechanical alloying method. J. Teknologi A, 2005, 43, 1.

[31]

Kim D.G., Kim G.S., Oh S.T., Kim Y.D. The initial stage of sintering for the W–Cu nanocomposite powder prepared from W–CuO mixture. Mater. Lett., 2004, 58(5): 578.

[32]

Di Girolamo G., Brentari A., Blasi C., Serra E. Microstructure and mechanical properties of plasma sprayed alumina-based coatings. Ceram. Int., 2014, 40(8): 12861.

[33]

Alirezaei S., Monirvaghefi S.M., Salehi M., Saatchi A. Effect of alumina content on surface morphology and hardness of Ni−P−Al2O3(α) electroless composite coatings. Surf. Coat. Technol., 2004, 184(2-3): 170.

[34]

Feng Q.Y., Li T.J., Yue H.Y., Qi K., Bai F.D., Jin J.Z. Preparation and characterization of nickel nano-Al2O3 composite coatings by sediment co-deposition. Appl. Surf. Sci., 2008, 254(8): 2262.

[35]

Gül H., Kiliç F., Aslan S., Alp A., Akbulut H. Characteristics of electro-co-deposited Ni−Al2O3 nano-particle reinforced metal matrix composite (MMC) coatings. Wear, 2009, 267(5-8): 976.

[36]

Shehata F., Abdelhameed M., Fathy A., Elmahdy M. Preparation and characteristics of Cu−Al2O3 nanocomposite. Open J. Met., 2011, 1(2): 25.

[37]

Straffelini G., Molinari A. Effect of hardness on rolling–sliding damage mechanisms in PM alloys. Powder Metall., 2001, 44(4): 153.

[38]

Khorsand H., Habibi S.M., Yoozbashizadea H., Janghorban K., Reihani S.M.S., Seraji H.R., Ashtari M. The role of heat treatment on wear behavior of powder metallurgy low alloy steels. Mater. Des., 2002, 23(7): 667.

[39]

Straelini G., Molinari A. Dry sliding wear of ferrous PM materials. Powder Metall., 2001, 44(3): 248.

[40]

Zhang Z.F., Zhang L.C., Mai Y.W. Wear of ceramic particle-reinforced metal-matrix composites. Part II A model of adhesive wear. J. Mater. Sci., 1995, 30(8): 1967.

[41]

Ritasalo R., Antonov M., Veinthal R., Hannula S.P. Comparison of the wear and frictional properties of Cu matrix composites prepared by pulsed electric current sintering. Proc. Est. Acad. Sci., 2014, 63(1): 62.

[42]

Yasir M., Zhang C., Wang W., Xu P., Liu L. Wear behaviors of Fe-based amorphous composite coatings reinforced by Al2O3 particles in air and in NaCl solution. Mater. Des., 2015, 88, 207.

[43]

Song B., Dong S.J., Liao H.L., Coddet C. Microstructure and wear resistance of FeAl/Al2O3 intermetallic composite coating prepared by atmospheric plasma spraying. Surf. Coat. Technol., 2015, 268, 24.

[44]

Hou K.H., Chen Y.C. Preparation and wear resistance of pulse electrodeposited Ni–W/Al2O3 composite coatings. Appl. Surf. Sci., 2011, 257(15): 6340.

[45]

El‐Hadek M.A., Kaytbay S. Al2O3 particle size effect on reinforced copper alloys: an experimental study. Strain, 2009, 45(6): 506.

[46]

Knechtel M., Prielipp H., Müllejans H., Claussen N., Rödel J. Mechanical properties of Al/Al2O3 and Cu/Al2O3 composites with interpenetrating networks. Scripta Metall. Mater., 1994, 31(8): 1085.

[47]

Hamid A.A., Ghosh P.K., Jain S.C., Ray S. The influence of porosity and particles content on dry sliding wear of cast in situ Al(Ti)–Al2O3(TiO2) composite. Wear, 2008, 265(1-2): 14.

[48]

Guicciardi S., Melandri C., Lucchini F., de Portu G. On data dispersion in pin-on-disk wear tests. Wear, 2002, 252(11-12): 1001.

[49]

Tang A.G., Wang M.L., Huang W., Wang X.L. Composition design of Ni–nano-Al2O3–PTFE coatings and their tribological characteristics. Surf. Coat. Technol., 2015, 282, 121.

[50]

Shrestha N.K., Sakurada K., Masuko M., Saji T. Composite coatings of nickel and ceramic particles prepared in two steps. Surf. Coat. Technol., 2001, 140(2): 175.

[51]

Farvizi M., Ebadzadeh T., Vaezi M.R., Kim H.S., Simchi A. Effect of nano Al2O3 addition on mechanical properties and wear behavior of NiTi intermetallic. Mater. Des., 2013, 51, 375.

[52]

Rajkumar K., Aravindan S. Tribological performance of microwave sintered copper–TiC–graphite hybrid composites. Tribol. Int., 2011, 44(4): 347.

[53]

Wen S.Z., Huang P. Principles of Tribology, 2002, New Jersey, John Wiley & Sons 172.

[54]

Govindarajan N., Gnanamoorthy R. Study of damage mechanisms and failure analysis of sintered and hardened steels under rolling–sliding contact conditions. Mater. Sci. Eng. A, 2007, 445-446, 259.

[55]

Gao Y., Jie J.C., Zhang P.C., Zhang J., Wang T.M., Li T.J. Wear behavior of high strength and high conductivity Cu alloys under dry sliding. Trans. Nonferrous Met. Soc. China, 2015, 25(7): 2293.

[56]

Kato K. Classification of Wear Mechanisms/Models, 2005, New Jersey, John Wiley & Sons 9.

[57]

Yao B., Han Z., Li Y.S., Tao N.R., Lu K. Dry sliding tribological properties of nanostructured copper subjected to dynamic plastic deformation. Wear, 2011, 271(9-10): 1609.

[58]

Han Z., Lu L., Lu K. Dry sliding tribological behavior of nanocrystalline and conventional polycrystalline copper. Tribol. Lett., 2006, 21(1): 45.

[59]

Zhang Y.S., Han Z., Wang K., Lu K. Friction and wear behaviors of nanocrystalline surface layer of pure copper. Wear, 2006, 260(9-10): 942.

[60]

Apachitei I., Duszczyk J. Autocatalytic nickel coatings on aluminium with improved abrasive wear resistance. Surf. Coat. Technol., 2000, 132(1): 89.

[61]

Bozzini B., Boniardi M., Fanigliulo A., Bogani F. Tribological properties of electroless Ni–P/diamond composite films. Mater. Res. Bull., 2001, 36(11): 1889.

[62]

Zhang X.Y., Ma Y., Lin N.M., Huang X.B., Hang R.Q., Fan A.L., Tang B. Microstructure, antibacterial properties and wear resistance of plasma Cu–Ni surface modified titanium. Surf. Coat. Technol., 2013, 232, 515.

[63]

Zhou G.H., Ding H.Y., Zhang Y., Hui D., Lui A.H. Fretting behavior of nano-Al2O3 reinforced coppermatrix composites prepared by coprecipitation. Metalurgija, 2009, 15(3): 169.

AI Summary AI Mindmap
PDF

113

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/