Solidification, microstructure, and mechanical properties of the as-cast ZRE1 magnesium alloy with different praseodymium contents

Z. M. Sheggaf , R. Ahmad , M. B. A. Asmael , A. M. M. Elaswad

International Journal of Minerals, Metallurgy, and Materials ›› 2017, Vol. 24 ›› Issue (11) : 1306 -1320.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2017, Vol. 24 ›› Issue (11) : 1306 -1320. DOI: 10.1007/s12613-017-1523-1
Article

Solidification, microstructure, and mechanical properties of the as-cast ZRE1 magnesium alloy with different praseodymium contents

Author information +
History +
PDF

Abstract

The influence of praseodymium (Pr) content on the solidification characteristics, microstructure, and mechanical properties of ZRE1 magnesium (Mg) cast alloy was investigated. The obtained solidification parameters showed that Pr strongly affected the solidification time, leading to refinement of the microstructure of the alloys. When the freezing time was reduced to approximately 52 s, the grain size decreased by 12%. Mg12Zn (Ce,Pr) was formed as a new phase upon the addition of Pr and was detected via X-ray diffraction analysis. The addition of Pr led to a substantial improvement in mechanical properties, which was attributed to the formation of intermetallic compounds; the ultimate tensile strength and yield strength increased by approximately 10% and 13%, respectively. Pr addition also refined the microstructure, and the hardness was recovered. The results herein demonstrate that the mechanical properties of Mg alloys are strongly influenced by their microstructure characteristics, including the grain size, volume fraction, and distribution of intermetallic phases.

Keywords

metal solidification / microstructure / mechanical properties / magnesium alloys / intermetallics

Cite this article

Download citation ▾
Z. M. Sheggaf, R. Ahmad, M. B. A. Asmael, A. M. M. Elaswad. Solidification, microstructure, and mechanical properties of the as-cast ZRE1 magnesium alloy with different praseodymium contents. International Journal of Minerals, Metallurgy, and Materials, 2017, 24(11): 1306-1320 DOI:10.1007/s12613-017-1523-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Lampman S., Zorc T., Henry S., Daquila J., Ronke A. ASM Handbook, Vol. 2. Properties and Selection: Nonferrous Alloys and Special Purpose Materials, 1990 1407.

[2]

Pekguleryuz M.O., Kainer K., Kaya A. Fundamentals of Magnesium Alloy Metallurgy, 2013, Cambridge, Elsevier 72.

[3]

Zhou T., Chen Z.H., Yang M.B., Hu J.J., Xia H. Investigation on microstructure characterization and property of rapidly solidified Mg–Zn–Ca–Ce–La alloys. Mater. Charact., 2012, 63, 77.

[4]

Zhao M.C., Liu M., Song G.L., Atrens A. Influence of microstructure on corrosion of as-cast ZE41. Adv. Eng. Mater., 2008, 10(1-2): 104.

[5]

Srinivasan A., Blawert C., Huang Y., Mendis C.L., Kainer K.U., Hort N. Corrosion behavior of Mg–Gd–Zn based alloys in aqueous NaCl solution. J. Magnesium Alloys, 2014, 2(3): 245.

[6]

Tekumalla S., Seetharaman S., Almajid A., Gupta M. Mechanical properties of magnesium-rare earth alloy systems: a review. Metals, 2015, 5(1): 1.

[7]

Wang Y.D., Wu G.H., Liu W.C., Pang S., Zhang Y., Ding W.J. Influence of heat treatment on microstructures and mechanical properties of gravity cast Mg–4.2Zn–1.5RE–0.7Zr magnesium alloy. Trans. Nonferrous Met. Soc. China, 2013, 23(12): 3611.

[8]

Wei L.Y., Dunlop G., Westengen H. The intergranular microstructure of cast Mg−Zn and Mg−Zn−rare earth alloys. Metall. Mater. Trans. A, 1995, 26(8): 1947.

[9]

Zhou T., Xia H., Chen Z. Effect of Ce on microstructures and mechanical properties of rapidly solidified Mg–Zn alloy. Mater. Sci. Technol., 2011, 27(7): 1198.

[10]

Fariñas J.C., Rucandio I., Pomares-Alfonso M.S., Villanueva-Tagle M.E., Larrea M.T. Determination of rare earth and concomitant elements in magnesium alloys by inductively coupled plasma optical emission spectrometry. Talanta, 2016, 154, 53.

[11]

Westengen H., Aune T.K. Magnesium casting alloys. Magnesium Technology: Metallurgy, Design Data, Applications, 2006, Heidelberg, Springer 145.

[12]

Guo C.P., Du Z.M., Li C.R. A thermodynamic description of the Mg–Pr–Y system. Calphad, 2008, 32(1): 177.

[13]

Cui X.P., Liu H.F., Meng J., Zhang D.P. Microstructure and mechanical properties of die-cast AZ91D magnesium alloy by Pr additions. Trans. Nonferrous Met. Soc. China, 2010, 20(2): 435.

[14]

Kawamura Y., Yamasaki M. Formation and mechanical properties of Mg97Zn1RE2 alloys with long-period stacking ordered structure. Mater. Trans., 2007, 48(11): 2986.

[15]

Liu L.Z., Chen X.H., Pan F.S., Wang Z.W., Liu W., Cao P., Yan T., Xu X.Y. Effect of Y and Ce additions on microstructure and mechanical properties of Mg–Zn–Zr alloys. Mater. Sci. Eng. A, 2015, 644, 247.

[16]

Ahmad R., Asmael M.B.A. Influence of cerium on microstructure and solidification of eutectic Al–Si piston alloy. Mater. Manuf. Processes, 2016, 31(15): 1948.

[17]

Huang Z.H., Liang S.M., Chen R.S., Han E.H. Solidification pathways and constituent phases of Mg–Zn–Y–Zr alloys. J. Alloys Compd., 2009, 468(1-2): 170.

[18]

Li J.L., Chen R.S., Ma Y.Q., Ke W. Computer-aided cooling curve thermal analysis and microstructural characterization of Mg–Gd–Y–Zr system alloys. Thermochim. Acta, 2014, 590, 232.

[19]

Farahany S., Bakhsheshi-Rad H.R., Idris M.H., Kadir M.R.A., Lotfabadi A.F., Ourdjini A. In-situ thermal analysis and macroscopical characterization of Mg–xCa and Mg–0.5Ca–xZn alloy systems. Thermochim. Acta, 2012, 527, 180.

[20]

Liang S.M., Chen R.S., Blandin J.J., Suery M., Han E.H. Thermal analysis and solidification pathways of Mg–Al–Ca system alloys. Mater. Sci. Eng. A, 2008, 480(1-2): 365.

[21]

Liu K., Wang Q.F., Du W.B., Wang Z.H., Li S.B. Microstructure and mechanical properties of extruded Mg–6Zn–xEr alloys. Trans. Nonferrous Met. Soc. China, 2013, 23(10): 2863.

[22]

Li J.H., Du W.B., Li S.B., Wang Z.H. Effect of aging on microstructure of Mg−Zn−Er alloys. J. Rare Earths, 2009, 27(6): 1042.

[23]

Chen Q., Shu D.Y., Zhao Z.D., Zhao Z.X., Wang Y.B., Yuan B.G. Microstructure development and tensile mechanical properties of Mg–Zn–RE–Zr magnesium alloy. Mater. Des., 2012, 40, 488.

[24]

Robson J.D. Effect of rare-earth additions on the texture of wrought magnesium alloys: the role of grain boundary segregation. Metall. Mater. Trans. A, 2014, 45(8): 3205.

[25]

Król M., Tański T., Sitek W. Thermal analysis and microstructural characterization of Mg−Al−Zn system alloys. Proceedings of the IOP Conference Series Materials Science and Engineering, 2015

[26]

Jafari H., Rahimi F., Sheikhsofla Z. In vitro corrosion behavior of Mg−5Zn alloy containing low Y contents. Mater. Corros., 2016, 67(4): 396.

[27]

Wang Y.D., Wu G.H., Liu W.C., Pang S., Zhang Y., Ding W.J. Effects of chemical composition on the microstructure and mechanical properties of gravity cast Mg–xZn–yRE–Zr alloy. Mater. Sci. Eng. A, 2014, 594, 52.

[28]

Khan M.I., Mostafa A.O., Aljarrah M., Essadiqi E., Medraj M. Influence of cooling rate on microsegregation behavior of magnesium alloys. J. Mater., 2014, 2014, 18.

[29]

StJohn D.H., Dahle A.K., Abbott T., Nave M.D., Qian M. Mathaudhu S.N., Luo A.A., Neelameggham N.R., Nyberg E.A., Sillekens W.H. Solidification of cast magnesium alloys. Essential Readings in Magnesium Technology, 2016 193.

[30]

StJohn D.H., Qian M., Easton M.A., Cao P., Hildebrand Z. Grain refinement of magnesium alloys. Metall. Mater. Trans. A, 2005, 36(7): 1669.

[31]

Qi Z.H. H. W.J., Xu J. Effect of microstructure on impact toughness of magnesium alloys. Trans. Nonferrous Met. Soc. China, 2012, 22(10): 2334.

[32]

Rzychoń T., Szala J., Kiełbus A. Microstructure, castability, microstructural stability and mechanical properties of ZRE1 magnesium alloy. Arch. Metall. Mater., 2012, 57(1): 245.

[33]

Li Q., Wang Q.D., Wang Y.X., Zeng X.Q., Ding W.J. Effect of Nd and Y addition on microstructure and mechanical properties of as-cast Mg–Zn–Zr alloy. J. Alloys Compd., 2007, 427(1-2): 115.

[34]

Chen T.J., Zhang D.H., Wang W., Ma Y., Hao Y. Effects of Zn content on microstructures and mechanical properties of Mg–Zn–RE–Sn–Zr–Ca alloys. Mater. Sci. Eng. A, 2014, 607, 17.

[35]

Wang J.F., Song P.F., Pan F.S., Zhou X.E. Microstructure and phase composition of as-cast Mg–9Er–6Y–xZn–0.6 Zr alloys. Trans. Nonferrous Met. Soc. China, 2013, 23(4): 889.

[36]

Yang Z., Li J.P., Zhang J.X., Lorimer G.W., Robson J. Review on research and development of magnesium alloys. Acta Metall. Sin. (Engl. Lett.), 2008, 21(5): 313.

[37]

Guo C.P., Du Z.M. Thermodynamic assessment of the Mg–Pr system. J. Alloys Compd., 2005, 399(1-2): 183.

[38]

Jin L.L., Kevorkov D., Medraj M., Chartrand P. Al–Mg–RE (RE= La, Ce, Pr, Nd, Sm) systems: Thermodynamic evaluations and optimizations coupled with key experiments and Miedema’s model estimations. J. Chem. Thermodyn., 2013, 58, 166.

[39]

Rokhlin L.L. Magnesium Alloys Containing Rare Earth Metals: Structure and Properties, 2003, NY, Taypor & Francis 256.

[40]

Chia T.L., Easton M.A., Zhu S.M., Gibson M.A., Birbilis N., Nie J.F. The effect of alloy composition on the microstructure and tensile properties of binary Mg−rare earth alloys. Intermetallics, 2009, 17(7): 481.

[41]

Feng H., Yang Y., Chang H.X. Influence of W-phase on mechanical properties and damping capacity of Mg–Zn–Y–Nd–Zr alloys. Mater. Sci. Eng. A, 2014, 609, 7.

[42]

Ma C.J., Liu M.P., Wu G.H., Ding W.J., Zhu Y.P. Tensile properties of extruded ZK60–RE alloys. Mater. Sci. Eng. A, 2003, 349(1-2): 207.

[43]

Lee Y.C., Dahle A.K., StJohn D. The role of solute in grain refinement of magnesium. Metall. Mater. Trans. A, 2000, 31(11): 2895.

[44]

Ahmad R., Sheggaf Z.M., Asmael M.B.A., Hamzah M.Z. Effect of rare earth addition on solidification characteristics and microstructure of ZRE1 magnesium cast alloy. Adv. Mater. Process. Technol., 2017, 3(3): 418.

[45]

Huang Z.H., Qi W.J., Zheng K.H., Zhang X.M., Liu M., Yu Z.M., Xu J. Microstructures and mechanical properties of Mg–Zn–Zr–Dy wrought magnesium alloys. Bull. Mater. Sci., 2013, 36(3): 437.

[46]

Trojanová Z., Donič T., Lukáč P., Palček P., Chalupová M., Tillová E., Bašťovanský R. Tensile and fracture properties of an Mg−RE−Zn alloy at elevated temperatures. J. Rare Earths, 2014, 32(6): 564.

[47]

Zhang J.H., Liu K., Fang D.Q., Qiu X., Yu P., Tang D.X., Meng J. Microstructures, mechanical properties and corrosion behavior of high-pressure die-cast Mg–4Al–0.4Mn–xPr (x = 1, 2, 4, 6) alloys. J. Alloys Compd., 2009, 480(2): 810.

[48]

Rzychoń T., Kiełbus A., Szala J. Microstructure and fluidity of sand cast ZRE1 alloy. J. Achiev. Mater. Manuf. Eng., 2008, 26(2): 135.

[49]

Tong G.D., Liu H.F., Liu Y.H. Effect of rare earth additions on microstructure and mechanical properties of AZ91 magnesium alloys. Trans. Nonferrous Met. Soc. China, 2010, 20(2): 336.

[50]

Srivatsan T.S., Vasudevan S., Petraroli M. The tensile deformation and fracture behavior of a magnesium alloy. J. Alloys Compd., 2008, 461(1-2): 154.

[51]

Itoi T., Suzuki T., Kawamura Y., Hirohashi M. Microstructure and mechanical properties of Mg−Zn−Y rolled sheet with a Mg12ZnY phase. Mater. Trans., 2010, 51(9): 1536.

[52]

Kubok K., Litynska-Dobrzynska L., Wojewoda-Budka J., Góral A., Debski A. Investigation of structures in as-cast alloys from the Mg−Zn−Ca system. Arch. Metall. Mater., 2013, 58(2): 329.

AI Summary AI Mindmap
PDF

192

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/