Development of liquid-nitrogen-cooling friction stir spot welding for AZ31 magnesium alloy joints

Dong Wu , Jun Shen , Meng-bing Zhou , Liang Cheng , Jia-xing Sang

International Journal of Minerals, Metallurgy, and Materials ›› 2017, Vol. 24 ›› Issue (10) : 1169 -1176.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2017, Vol. 24 ›› Issue (10) : 1169 -1176. DOI: 10.1007/s12613-017-1507-1
Article

Development of liquid-nitrogen-cooling friction stir spot welding for AZ31 magnesium alloy joints

Author information +
History +
PDF

Abstract

A liquid-nitrogen-cooling friction stir spot welding (C-FSSW) technology was developed for welding AZ31 magnesium alloy sheets. The liquid-nitrogen cooling degraded the deformability of the welded materials such that the width of interfacial cracks increased with increasing cooling time. The grain size of the stirred zone (SZ) and the heat-affected zone (HAZ) of the C-FSSW-welded joints decreased, whereas that of the thermomechanically affected zone (TMAZ) increased with increasing cooling time. The maximum tensile shear load of the C-FSSW-welded joints welded with a cooling time of 5 or 7 s was larger than that of the friction stir spot welding (FSSW)-welded joint, and the tensile shear load decreased with increasing cooling time. The microhardness of the C-FSSW-welded joints was greater than that of the FSSW-welded joint. Moreover, the microhardness of the SZ and the HAZ of the C-FSSW-welded joints increased, whereas that of the TMAZ decreased, with increasing cooling time.

Keywords

magnesium alloy / liquid nitrogen cooling / friction stir spot welding / microstructure / mechanical property

Cite this article

Download citation ▾
Dong Wu, Jun Shen, Meng-bing Zhou, Liang Cheng, Jia-xing Sang. Development of liquid-nitrogen-cooling friction stir spot welding for AZ31 magnesium alloy joints. International Journal of Minerals, Metallurgy, and Materials, 2017, 24(10): 1169-1176 DOI:10.1007/s12613-017-1507-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Mitlin D., Radmilovic V., Pan T., Chen J., Feng Z., Santella M.L. Structure–properties relations in spot friction welded (also known as friction stir spot welded) 6111 aluminum. Mater. Sci. Eng. A, 2006, 441(1-2): 79.

[2]

Shen J., Min D., Wang D. Effects of heating process on the microstructures and tensile properties of friction stir spot welded AZ31 magnesium alloy plates. Mater. Des., 2011, 32(10): 5033.

[3]

Shen J., Wen L., Luo X., Xu N., Wang D., Liu M. Development of novel heating tool friction stir spot welding (HT-FSSW) for AZ31 magnesium alloy. Sci. Technol. Weld. Joining, 2014, 19(5): 369.

[4]

Zhang Z.H., Yang X.Q., Zhang J.L., Zhou G., Xu X.D., Zou B.L. Effect of welding parameters on microstructure and mechanical properties of friction stir spot welded 5052 aluminum alloy. Mater. Des., 2011, 32(8-9): 4461.

[5]

Tozaki Y., Uematsu Y., Tokaji K. Effect of tool geometry on microstructure and static strength in friction stir spot welded aluminium alloys. Int. J. Mach. Tools Manuf., 2007, 47, 2230.

[6]

Rodrigues D.M., Loureiro A., Leitao C., Leal R.M., Chaparro B.M., Vilaça P. Influence of friction stir welding parameters on the microstructural and mechanical properties of AA 6016-T4 thin welds. Mater. Des., 2008, 30(6): 1913.

[7]

Chen Y.C., Nakata K. Effect of tool geometry on microstructure and mechanical properties of friction stir lap welded magnesium alloy and steel. Mater. Des., 2009, 30(9): 3913.

[8]

Shen J., Wang D., Liu K. Effects of pin diameter on microstructures and mechanical properties of friction stir spot welded AZ31B magnesium alloy joints. Sci. Technol. Weld. Joining, 2012, 17(5): 357.

[9]

Y.K. Yang, H.G. Dong, H.B. Cao, Y.A. Chang, and S.D. Kou, Liquation of Mg alloys in friction stir spot welding, Weld. J.,, 87(2008), p. 167-s.

[10]

Sun Y.F., Shen J.M., Morisada Y., Fujii H. Spot friction stir welding of low carbon steel plates preheated by high frequency induction. Mater. Des., 2014, 54, 450.

[11]

Santos T.G., Miranda R.M., Vilaça P. Friction stir welding assisted by electrical joule effect. Key Eng. Mater., 2014, 611-612, 2127.

[12]

Santos T.G., Lopes N., Machado M., Vilaça P., Miranda R.M. Surface reinforcement of AA5083-H111 by friction stir processing assisted by electrical current. J. Mater. Process. Technol., 2015, 216, 375.

[13]

Luo J., Chen W., Fu G. Hybrid-heat effects on electrical- current aided friction stir welding of steel, and Al and Mg alloys. J. Mater. Process. Technol., 2014, 214(12): 3002.

[14]

Jata K.V., Semiatin S.L. Continuous dynamic recrystallization during friction stir welding of high strength aluminum alloys. Scripta Mater., 2000, 43(8): 743.

[15]

Sato Y.S., Kokawa H., Enomoto M., Jogan S. Microstructural evolution of 6063 aluminum during friction-stir welding. Metall. Mater. Trans. A, 1999, 30(9): 2429.

[16]

Heinz B., Skrotzki B. Characterization of a friction- stir-welded aluminum alloy 6013. Metall. Mater. Trans. B, 2002, 33(3): 489.

[17]

Jata K.V., Sankaran K.K., Ruschau J.J. Friction-stir welding effects on microstructure and fatigue of aluminum alloy 7050-T7451. Metall. Mater. Trans. A, 2012, 31(9): 2181.

[18]

Shen J., Wen L.B., Li Y., Min D. Effects of welding speed on the microstructures and mechanical properties of laser welded AZ61 magnesium alloy joints. Mater. Sci. Eng. A, 2013, 578, 303.

[19]

Yin Y.H., Sun N., North T.H., Hu S.S. Hook formation and mechanical properties in AZ31 friction stir spot welds. J. Mater. Process. Technol., 2010, 210(14): 2062.

[20]

Badarinarayan H., Shi Y., Li X., Okamoto K. Effect of tool geometry on hook formation and static strength of friction stir spot welded aluminum 5754-O sheets. Int. J. Mach. Tools Manuf., 2009, 49(11): 814.

[21]

Benavides S., Li Y., Murr L.E., Brown D., Mcclure J.C. Low-temperature friction-stir welding of 2024 aluminum. Scripta Mater., 1999, 41(8): 809.

AI Summary AI Mindmap
PDF

120

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/