Tempering stability of Fe–Cr–Mo–W–V hot forging die steels

Yuan-ji Shi , Xiao-chun Wu , Jun-wan Li , Na Min

International Journal of Minerals, Metallurgy, and Materials ›› 2017, Vol. 24 ›› Issue (10) : 1145 -1157.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2017, Vol. 24 ›› Issue (10) : 1145 -1157. DOI: 10.1007/s12613-017-1505-3
Article

Tempering stability of Fe–Cr–Mo–W–V hot forging die steels

Author information +
History +
PDF

Abstract

The tempering stability of three Fe–Cr–Mo–W–V hot forging die steels (DM, H21, and H13) was investigated through hardness measurements and transmission electron microscopy (TEM) observations. Both dilatometer tests and TEM observations revealed that DM steel has a higher tempering stability than H21 and H13 steels because of its substantial amount of M2C (M represents metallic element) carbide precipitations. The activation energies of the M2C carbide precipitation processes in DM, H21, and H13 steels are 236.4, 212.0, and 228.9 kJ/mol, respectively. Furthermore, the results indicated that vanadium atoms both increase the activation energy and affect the evolution of M2C carbides, resulting in gradual dissolution rather than over-aging during tempering.

Keywords

tempering stability / hot forging / die steels / carbide precipitation

Cite this article

Download citation ▾
Yuan-ji Shi, Xiao-chun Wu, Jun-wan Li, Na Min. Tempering stability of Fe–Cr–Mo–W–V hot forging die steels. International Journal of Minerals, Metallurgy, and Materials, 2017, 24(10): 1145-1157 DOI:10.1007/s12613-017-1505-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Kim D.H., Lee H.C., Kim B.M., Kim K.H. Estimation of die service life against plastic deformation and wear during hot forging processes. J. Mater. Process. Technol., 2005, 166(3): 372.

[2]

Frisk K. Simulation of precipitation of secondary carbides in hot work tool steels. Mater. Sci. Technol., 2012, 28(3): 288.

[3]

Nagakura S., Hirotsu Y., Kusunoki M., Suzuki T., Nakamura Y. Crystallographic study of the tempering of martensitic carbon steel by electron microscopy and diffraction. Metall. Trans. A, 1983, 14(6): 1025.

[4]

Taylor K.A., Chang L., Olson G.B., Smith G.D.W., Cohen M., Vander Sande J.B. Spinodal decomposition during aging of Fe-Ni-C martensites. Metall. Trans. A, 1989, 20(12): 2717.

[5]

Baltazar Hernandez V.H., Nayak S.S., Zhou Y. Tempering of martensite in dual-phase steels and its effects on softening behavior. Metall. Mater. Trans. A, 2011, 42(10): 3115.

[6]

Xu L.Q., Zhang D.T., Liu Y.C., Ning B.Q., Qiao Z.X., Yan Z.S., Li H.J. Precipitation behavior and martensite lath coarsening during tempering of T/P92 ferritic heat-resistant steel. Int. J. Miner. Metall. Mater., 2014, 21(5): 438.

[7]

Ghosh G., Olson G.B. Precipitation of paraequilibrium cementite: Experiments, and thermodynamic and kinetic modeling. Acta Mater., 2002, 50(8): 2099.

[8]

Björklund S., Donaghey L.F., Hillert M. The effect of alloying elements on the rate of Ostwald ripening of cementite in steel. Acta Metall., 1972, 20(7): 867.

[9]

Kim B., Celada C., San Martín D., Sourmail T., Rivera-Díaz-del-Castillo P.E.J. The effect of silicon on the nanoprecipitation of cementite. Acta Mater., 2013, 61(18): 6983.

[10]

Miyamoto G., Oh J.C., Hono K., Furuhara T., Maki T. Effect of partitioning of Mn and Si on the growth kinetics of cementite in tempered Fe–0.6 mass% C martensite. Acta Mater., 2007, 55(15): 5027.

[11]

Thomson R.C., Miller M.K. The partitioning of substitutional solute elements during the tempering of martensite in Cr and Mo containing steels. Appl. Surf. Sci., 1995, 87-88(3): 185.

[12]

Pilling J., Ridley N. Tempering of 2.25 pct Cr-1 pct Mo low carbon steels. Metall. Trans. A, 1982, 13(4): 557.

[13]

Baker R.G., Nutting J. The tempering of 2.25Cr–1Mo steel after quenching and normalizing. J. Iron Steel Inst., 1959, 192, 257.

[14]

Inoue A., Masumoto T. Carbide reactions (M3C → M7C3 → M23C6 → M6C) during tempering of rapidly solidified high carbon Cr-W and Cr-Mo steels. Metall. Trans. A, 1980, 11(5): 739.

[15]

Chakraborty P., Kain V., Pradhan P.K., Fotedar R.K., Krishnamurthy N. Corrosion of modified 9Cr–1Mo steel and Indian RAFMS in static Pb–17Li at 773 K. J. Fusion Energy, 2015, 34(2): 293.

[16]

Viswanathan R., Bakker W.T. Materials for ultrasupercritical coal power plants—Boiler materials: Part 1. J. Mater. Eng. Perform., 2001, 10(1): 81.

[17]

Porollo S.I., Dvoriashin A.M., Konobeev Y.V., Gamer F.A. Microstructure and mechanical properties of ferritic/martensitic steel EP-823 after neutron irradiation to high doses in BOR-60. J. Nucl. Mater., 2004, 329-333, 314.

[18]

Klueh R.L. Elevated temperature ferritic and martensitic steels and their application to future nuclear reactors. Int. Mater. Rev., 2005, 50(5): 287.

[19]

Moniri S., Ghoranneviss M., Hantehzadeh M.R., Salar Elah A. Nano-scale precipitates of reduced activation steels for the application of nuclear fusion reactors. J. Fusion Energy, 2015, 34(3): 449.

[20]

Nurbanasari M., Tsakiropoulos P., Palmiere E.J. Microstructural evolution of a heat-treated H23 tool steel. Int. J. Miner. Metall. Mater., 2015, 22(3): 272.

[21]

Mukherjee T. Materials for Metal Cutting, 1970 80.

[22]

Zhang Y.T., Miao L.D., Wang X.J., Zhang H.Q., Li J.F. Evolution behavior of carbides in 2.25Cr-1Mo-0.25V steel. Mater. Trans., 2009, 50(11): 2507.

[23]

Zhang Y. Application of Phase Equilibrium Thermodynamic Method in Alloy Design for High Carbon Alloy Steel with Ultra-Fine Carbides, 2007, Dalian, Dalian Maritime University.

[24]

Ishii R., Tsuda Y., Yamada M., Kimura K. Fine precipitates in high chromium heat resisting steels. Tetsu-to-Hagane, 2002, 88(1): 36.

[25]

Onizawa T., Wakai T., Ando M., Aoto K. Effect of V and Nb on precipitation behavior and mechanical properties of high Cr steel. Nucl. Eng. Des., 2008, 238(2): 408.

[26]

Mesquita R.A., Kestenbach H.J. Influence of silicon on secondary hardening of 5wt% Cr steels. Mater. Sci. Eng. A, 2012, 556, 970.

[27]

Medvedeva A., Bergström J., Gunnarsson S., Andersson J. High-temperature properties and microstructural stability of hot-work tool steels. Mater. Sci. Eng. A, 2009, 523(1-2): 39.

[28]

Bala P., Pacyna J. The kinetics of phase transformations during tempering in high-speed steels. J. Ach. Mater. Manuf. Eng., 2007, 23(2): 15.

[29]

Johnson W.A., Mehl R.F. Reaction kinetics in processes of nucleation and growth. Trans. AIME, 1939, 135(8): 416.

[30]

Avrami M. Kinetics of phase change. I General theory. J. Chem. Phys., 1939, 7(12): 1103.

[31]

Avrami M. Kinetics of phase change. II Transformation-time relations for random distribution of nuclei. J. Chem. Phys., 1940, 8(2): 212.

[32]

Avrami M. Granulation, phase change, and microstructure kinetics of phase change. III. J. Chem. Phys., 1941, 9(2): 177.

[33]

López-Martínez E., Vázquez-Gómez O., Vergara- Hernández H.J., Campillo B. Effect of initial microstructure on austenite formation kinetics in high-strength experimental microalloyed steels, Int. J. Miner.. Metall. Mater., 2015, 22(12): 1304.

[34]

Lifshitz I.M., Slyozov V.V. The kinetics of precipitation from supersaturated solid solutions. J. Phys. Chem. Solids, 1961, 19(1-2): 35.

[35]

Wagner C. Theorie der alterung von niederschlägen durch umlösen. Z. Elektrochem., 1961, 65(7-8): 581.

[36]

Lindsley B.A., Marder A.R. Solid particle erosion of an Fe-Fe3C metal matrix composite. Metall. Mater. Trans. A, 1998, 29(3): 1071.

[37]

Nam W.J., Bae C.M. Coarsening behavior of cementite particles at a subcritical temperature in a medium carbon steel. Scripta Mater., 1999, 41(3): 313.

[38]

Liu L.R., Jin T., Zhao N.R., Sun X.F., Guan H.R., Hu Z.Q. Formation of carbides and their effects on stress rupture of a Ni-base single crystal superalloy. Mater. Sci. Eng. A, 2003, 361(1-2): 191.

[39]

He L.Z., Zheng Q., Sun X.F., Guan H.R., Hu Z.Q., Tieu A.K., Lu C., Zhu H.T. Effect of carbides on the creep properties of a Ni-base superalloy M963. Mater. Sci. Eng. A, 2005, 397(1): 297.

[40]

Wu H.B., Yan S.W., Yuan S.Q., Shang C.J., Wang X.M., He X.L. Effect of isothermal relaxation on thermo-stability of non-equilibrium microstructure in micro-alloyed steel. Acta Metall. Sinica, 2005, 41(4): 385.

[41]

Ferrari M.T.C., Andersson J., Kvarnström M. Influence of lowered austenitisation temperature during hardening on tempering resistance of modified H13 tool steel (Uddeholm Dievar). Int. Heat Treat. Surf. Eng., 2013, 7(3): 129.

[42]

Gope N., Chatterjee A., Mukherjee T., Sarma D.S. Influence of long-term aging and superimposed creep stress on the microstructure of 2.25Cr-1Mo steel. Metall. Trans. A, 1993, 24(2): 315.

[43]

Yang R.C., Chen K., Feng H.X., Wang H. Determination and application of larson-miller parameter for heat resistant steel 12CrlMoV and 15CrMo. Acta Metall. Sinica (Engl. Lett.), 2004, 17(4): 471.

[44]

Yang R.C., Chen K., Feng H.X., Wang H. Variation of substructures of pearlitic heat resistant steel after high temperature aging. Acta Metall. Sinica (Engl. Lett.), 2004, 17(4): 477.

[45]

Zhou Q.C., Wu X.C., Shi N.N., Li J.W., Min N. Microstructure evolution and kinetic analysis of DM hot-work die steels during tempering. Mater. Sci. Eng. A, 2011, 528(18): 5696.

[46]

Bhadeshia H.K.D.H., Honeycombe R.W.K. Steels Microstructure and Properties, 2006 195.

[47]

Karagöz S., Fischmeister H.F., Andrén H.O., Cai G.J. Microstructural changes during overtempering of high-speed steels. Metall. Trans. A, 1992, 23(6): 1631.

[48]

Guo J., Qu H.W., Liu L.G., Sun Y.L., Zhang Y., Yang Q.X. Study on stable and meta-stable carbides in a high speed steel for rollers during tempering processes. Int. J. Miner. Metall. Mater., 2013, 20(2): 146.

[49]

Kurzydlowski K.J., Zielinski W. Mo2C → M6C carbide transformation in low alloy Cr-Mo ferritic steels. Met. Sci., 1984, 18(4): 223.

[50]

Hu X.B., Li L., Wu X.C., Zhang M. Coarsening behavior of M23C6 carbides after ageing or thermal fatigue in AISI H13 steel with niobium. Int. J. Fatigue, 2006, 28(3): 175.

[51]

Dudova N., Kaibyshev R. On the precipitation sequence in a 10%Cr steel under tempering. ISIJ Int., 2011, 51(5): 826.

[52]

Jung M., Lee S.J., Lee Y.K. Microstructural and dilatational changes during tempering and tempering kinetics in martensitic medium-carbon steel. Metall. Mater. Trans. A, 2009, 40(3): 551.

[53]

Bala P. The kinetics of phase transformations during tempering of tool steels with different carbon content. Arch. Metall. Mater., 2009, 54(2): 491.

[54]

Tao P., Zhang C., Yang Z.G., Takeda H. Evolution of second phase in 2.25Cr-1Mo-0.25V steel weld metal during high temperature tempering. Acta Metall. Sinica, 2009, 45(1): 51.

[55]

Jung J.G., Jung M., Kang S., Lee Y.K. Precipitation behaviors of carbides and Cu during continuous heating for tempering in Cu-bearing medium C martensitic steel. J. Mater. Sci., 2014, 49(5): 2204.

[56]

Lee H.M., Allen S.M. Coarsening resistance of M2C carbides in secondary hardening steels: Part III. Comparison of theory and experiment. Metall. Trans. A, 1991, 22(12): 2877.

[57]

Davies D.M., Ralph B. Field ion microscopic study of quenched and tempered Fe-Mo-C. J. Iron Steel Inst., 1972, 210(4): 262.

[58]

Lee H.M., Allen S.M., Grujicic M. Coarsening resistance of M2C carbides in secondary hardening steels: Part I. Theoretical model for multicomponent coarsening kinetics. Metall. Trans. A, 1991, 22(12): 2863.

[59]

Zhao Z.Y. Studing status on the secondary hardening phenomenon in ultra-high strength steels. J. Aeronaut. Mater., 2002, 22(4): 46.

[60]

Wen T., Hu X.F., Song Y.Y., Yan D.S., Rong L.J. Carbides and mechanical properties in an Fe–Cr–Ni–Mo high-strength steel with different V contents. Mater. Sci. Eng. A, 2013, 588, 201.

[61]

Suresh S. Fatigue of Materials, Cambridge Solid State Science Series, 1991, Cambridge, Cambridge University.

[62]

Armas A.F., Petersen C., Schmitt R., Avalos M., Alvarez- Armas I. Mechanical and microstructural behaviour of isothermally and thermally fatigued ferritic/martensitic steels. J. Nucl. Mater., 2002, 307-311, 509.

[63]

Sjötröm J. Chromium Martensitic Hot-work Tool Steels Damage, Performance and Microstructure, 2004, Karlstad, Karlstad University.

AI Summary AI Mindmap
PDF

126

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/