A comparative study on corrosion kinetic parameter estimation methods for the early stage corrosion of Q345B steel in 3.5wt% NaCl solution

Shuang-yu Cai , Lei Wen , Ying Jin

International Journal of Minerals, Metallurgy, and Materials ›› 2017, Vol. 24 ›› Issue (10) : 1112 -1124.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2017, Vol. 24 ›› Issue (10) : 1112 -1124. DOI: 10.1007/s12613-017-1502-6
Article

A comparative study on corrosion kinetic parameter estimation methods for the early stage corrosion of Q345B steel in 3.5wt% NaCl solution

Author information +
History +
PDF

Abstract

Corrosion kinetic parameters play an important role in researchers’ ability to understand and predict corrosion behavior. The corrosion kinetic parameters of structural steel Q345B specimens immersed in 3.5wt% NaCl solution for 1–2 h were determined using linear polarization resistance (LPR), Tafel-curve multiparameter fitting, electrochemical impedance spectroscopy (EIS), and electrochemical frequency modulation (EFM) methods. The advantages and disadvantages of each method were investigated and discussed through comparative investigation. Meanwhile, the average corrosion rate was examined using traditional coupon tests. The results showed that the corrosion current density values estimated by EFM at a base frequency of 0.001 Hz and those obtained by Tafel-curve four-parameter fitting (TC4) are similar and consistent with the results of coupon tests. Because of their slight perturbation of the corrosion system, EIS and EFM/TC4 in collaborative application are the recommended techniques for determining the kinetics and the corresponding parameters for the homogeneous corrosion of the naked metal. In our study of the electrochemical kinetics, we obtained much more abundant and accurate electrochemical kinetic parameters through the combined use of different electrochemical methods.

Keywords

structural steel / corrosion kinetics / Tafel curve / electrochemical impedance spectroscopy

Cite this article

Download citation ▾
Shuang-yu Cai, Lei Wen, Ying Jin. A comparative study on corrosion kinetic parameter estimation methods for the early stage corrosion of Q345B steel in 3.5wt% NaCl solution. International Journal of Minerals, Metallurgy, and Materials, 2017, 24(10): 1112-1124 DOI:10.1007/s12613-017-1502-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Frankel G.S. Electrochemical techniques in corrosion: status, limitations, and needs. J. ASTM Int., 2008, 5(2): 1.

[2]

Edgemon G.L. Electrochemical noise based corrosion monitoring at the Hanford site: third generation system development, design, and data. Corrosion 2001, NACE International, 2001

[3]

Kursten B., Druyts F., Areias L., van Ingelgem Y., De Wilde D., Nieubourg G., Duffó G.S., Bataillon C. Preliminary results of corrosion monitoring studies of carbon steel overpack exposed to supercontainer concrete buffer. Corros. Eng. Sci. Technol., 2014, 49(6): 485.

[4]

Girija S., Kamachi Mudali U. Electrochemical noise resistance evaluation of 304L SS in nitric acid and simulated nuclear high level waste. Corros. Eng. Sci. Technol., 2014, 49(5): 335.

[5]

Barbalat M., Caron D., Lanarde L., Meyer M., Fontaine S., Castillon F., Vittonato J., Refait P. Estimation of residual corrosion rates of steel under cathodic protection in soils via voltammetry. Corros. Sci., 2013, 73, 222.

[6]

Barbalat M., Lanarde L., Caron D., Meyer M., Vittonato J., Castillon F., Fontaine S., Refait P. Electrochemical study of the corrosion rate of carbon steel in soil: Evolution with time and determination of residual corrosion rates under cathodic protection. Corros. Sci., 2012, 55, 246.

[7]

Ansuini F.J., Dimond J.R. Field tests on an advanced cathodic protection coupon. Corrosion 2005, NACE International, 2005

[8]

Li S.Y., Kim Y.G., Jung S., Song H.S., Lee S.M. Application of steel thin film electrical resistance sensor for in situ corrosion monitoring. Sens. Actuators B, 2007, 120(2): 368.

[9]

Varela F., Tan M.Y.J., Forsyth M. An overview of major methods for inspecting and monitoring external corrosion of on-shore transportation pipelines. Corros. Eng. Sci. Technol., 2015, 50(3): 226.

[10]

Roberge P.R., Tullmin M.A.A., Grenier L., Ringas C. Corrosion surveillance for aircraft. Mater. Perform., 1996, 35(12): 50.

[11]

Pruckner F., Theiner J., Eri J., Nauer G.E. In-situ monitoring of the efficiency of the cathodic protection of reinforced concrete by electrochemical impedance spectroscopy. Electrochim. Acta, 1996, 41(7-8): 1233.

[12]

Del Valle-Moreno A., Genescá-Llongueras J., Torres-Acosta A.A., Martínez M. EIS monitoring of cathodic protection of steel reinforced concrete enhanced by humectants. ECS Trans., 2009, 20(1): 489.

[13]

Andrade C., Sanchez J., Fullea J., Rebolledo N., Tavares F. On-site corrosion rate measurements: 3D simulation and representative values. Mater. Corros., 2012, 63(12): 1154.

[14]

Saraswathy V., Karthick S.P. Effect of ecofriendly sealing coat against corrosion protection of steel rebars in concrete. Corros. Eng. Sci. Technol., 2014, 49(5): 327.

[15]

Wasim M., Hussain R.R. Comparative study on induced macrocell corrosion phenomenon in repaired ordinary reinforced and self-compacting concrete structures. Corros. Eng. Sci. Technol., 2013, 48(5): 370.

[16]

Prosek T., Le Bozec N., Thierry D. Application of automated corrosion sensors for monitoring the rate of corrosion during accelerated corrosion tests. Mater. Corros., 2014, 65(5): 448.

[17]

Kouril M., Prosek T., Scheffel B., Dubois F. High sensitivity electrical resistance sensors for indoor corrosion monitoring. Corros. Eng. Sci. Technol., 2013, 48(4): 282.

[18]

Dravnieks A., Cataldi H.A. Industrial applications of a method for measuring small amounts of corrosion without removal of corrosion products. Corrosion, 1954, 10(7): 224.

[19]

Freedman A.J., Troscinski E.S., Dravnieks A. An electrical resistance method of corrosion monitoring in refinery equipment. Corrosion, 1958, 14(4): 29.

[20]

Yang L.T. Techniques for Corrosion Monitoring, 2008, Cambridge, Woodhead Publishing Ltd. 277.

[21]

Thierry D., Taher A., Leygraf C. Corrosion monitoring techniques applied to cooling water and district heating systems. Corrosion 87, NACE International, 1987

[22]

Oldham K.B., Mansfeld F. Corrosion rates from polarization curves: A new method. Corros. Sci., 1973, 13(10): 813.

[23]

Mansfeld F. Simultaneous determination of instantaneous corrosion rates and Tafel slopes from polarization resistance measurements. J. Electrochem. Soc., 1973, 120(4): 515.

[24]

Mansfeld F. Tafel slopes and corrosion rates from polarization resistance measurements. Corrosion, 1973, 29(10): 397.

[25]

Mansfeld F., Kendig M. Technical note: concerning the choice of scan rate in polarization measurements. Corrosion, 1981, 37(9): 545.

[26]

Cao C.N. Estimation of electrochemical kinetic parameters of corrosion processes by weak polarization curve fitting. J. Chin. Soc. Corros. Prot., 1985, 5(3): 155.

[27]

Zhao Y.T., Guo X.P. Determination of electrochemical kinetic parameters in a mixture controlled corrosion system. Acta Phys. Chim. Sinica, 2006, 22(10): 1281.

[28]

Sun Y., Remias J.E., Neathery J.K., Liu K. Electrochemical study of corrosion behaviour of carbon steel A106 and stainless steel 304 in aqueous monoethanolamine. Corros. Eng. Sci. Technol., 2011, 46(6): 724.

[29]

Chen G.B., Yang H.Y., Li H.J. In situ characterization of natural pyrite bioleaching using electrochemical noise technique. Int. J. Miner. Metall. Mater., 2016, 23(2): 117.

[30]

Huang Y.L., Shih H., Huang H.C., Daugherty J., Wu S., Ramanathan S., Chang C., Mansfeld F. Evaluation of the corrosion resistance of anodized aluminum 6061 using electrochemical impedance spectroscopy (EIS). Corros. Sci., 2008, 50(12): 3569.

[31]

Mareci D., Rusu I., Chelariu R., Bolat G., Munteanu C., Sutiman D., Souto R.M. Application of dynamic electrochemical impedance spectroscopy to the evaluation of the corrosion resistance of a historic bronze object in artificial acid rainwater. Eur. J. Sci. Technol., 2013, 9(6): 189.

[32]

Xu L.N., Zhu J.Y., Lu M.X., Zhang L., Chang W. Electrochemical impedance spectroscopy study on the corrosion of the weld zone of 3Cr steel welded joints in CO2 environments. Int. J. Miner. Metall. Mater., 2015, 22(5): 500.

[33]

Schneider O., Kelly R.G. Localised coating failure of epoxy coated aluminium alloy 2024–T3 in 0.5 M NaCl solutions: comparison of conventional electrochemical techniques and microelectrochemical methods. Corros. Eng. Sci. Technol., 2003, 38(2): 119.

[34]

Sathiyanarayanan S., Balakrishnan K. Critique of harmonic analysis for corrosion rate measurements. Br. Corros. J., 1994, 29(2): 152.

[35]

Darowicki K., Majewska J. Harmonic analysis of electrochemical and corrosion systems—a review. Corros. Rev., 1999, 17(5-6): 383.

[36]

Jankowski J. Harmonic synthesis: A novel electrochemical method for corrosion rate monitoring. J. Electrochem. Soc., 2003, 150(4): B181.

[37]

Andrade C., Alonso C. Corrosion rate monitoring in the laboratory and on-site. Constr. Build. Mater., 1996, 10(5): 315.

[38]

Zou Y., Wang J., Zheng Y.Y. Electrochemical techniques for determining corrosion rate of rusted steel in seawater. Corros. Sci., 2011, 53(1): 208.

[39]

Stern M., Geary A.L. Electrochemical polarization I. A theoretical analysis of the shape of polarization curves. J. Electrochem. Soc., 1957, 104(1): 56.

[40]

Li D. Electrochemistry Theory, 1999, Beijing, Beihang University Press 308.

[41]

Bosch R.W., Hubrecht J., Bogaerts W.F., Syrett B.C. Electrochemical frequency modulation: A new electrochemical technique for online corrosion monitoring. Corrosion, 2001, 57(1): 60.

[42]

Kus E., Mansfeld F. An evaluation of the electrochemical frequency modulation (EFM) technique. Corros. Sci., 2006, 48(4): 965.

[43]

Han L., Song S.Z. Using electrochemical frequency modulation technique to detect corrosion of carbon steel in seawater. J. Chem. Ind. Eng., 2008, 59(4): 977.

[44]

González J.A., Molina A., Escudero M.L., Andrade C. Errors in the electrochemical evaluation of very small corrosion rates—I. Polarization resistance method applied to corrosion of steel in concrete. Corros. Sci., 1985, 25(10): 917.

[45]

González J.A., Molina A., Escudero M.L., Andrade C. Errors in the electrochemical evaluation of very small corrosion rates—II. Other electrochemical techniques applied to corrosion of steel in concrete. Corros. Sci., 1985, 25(7): 519.

[46]

Melchers R.E., Jeffrey R. Early corrosion of mild steel in seawater. Corros. Sci., 2005, 47(7): 1678.

[47]

Wei B.M. Metal Corrosion Theory and Application, 1984, Beijing, Chemical Industry Press 96.

[48]

Wu Y.S. The Research Methods of Metal Corrosion, 1993, Beijing, Metallurgical Industry Press 71.

[49]

Gojkovic S.L., Zecevic S.K., Obradovic M.D., DražIc D.M. Oxygen reduction on a duplex stainless steel. Corros. Sci., 1998, 40(6): 849.

[50]

Le Bozec N., Compère C., L’Her M., Laouenan A., Costa D., Marcus P. Influence of stainless steel surface treatment on the oxygen reduction reaction in seawater. Corros. Sci., 2001, 43(4): 765.

[51]

Davydov A., Rybalka K.V., Beketaeva L.A., Engelhardt G.R., Jayaweera P., Macdonald D.D. The kinetics of hydrogen evolution and oxygen reduction on Alloy 22. Corros. Sci., 2005, 47(1): 195.

AI Summary AI Mindmap
PDF

102

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/