In situ reaction mechanism of MgAlON in Al–Al2O3–MgO composites at 1700°C under flowing N2

Shang-hao Tong , Yong Li , Ming-wei Yan , Peng Jiang , Jia-jia Ma , Dan-dan Yue

International Journal of Minerals, Metallurgy, and Materials ›› 2017, Vol. 24 ›› Issue (9) : 1061 -1066.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2017, Vol. 24 ›› Issue (9) : 1061 -1066. DOI: 10.1007/s12613-017-1496-0
Article

In situ reaction mechanism of MgAlON in Al–Al2O3–MgO composites at 1700°C under flowing N2

Author information +
History +
PDF

Abstract

The Al–Al2O3–MgO composites with added aluminum contents of approximately 0wt%, 5wt%, and 10wt%, named as M1, M2, and M3, respectively, were prepared at 1700°C for 5 h under a flowing N2 atmosphere using the reaction sintering method. After sintering, the Al–Al2O3–MgO composites were characterized and analyzed by X-ray diffraction, scanning electron microscopy, and energy-dispersive X-ray spectroscopy. The results show that specimen M1 was composed of MgO and MgAl2O4. Compared with specimen M1, specimens M2 and M3 possessed MgAlON, and its production increased with increasing aluminum addition. Under an N2 atmosphere, MgO, Al2O3, and Al in the matrix of specimens M2 and M3 reacted to form MgAlON and AlN-polytypoids, which combined the particles and the matrix together and imparted the Al–Al2O3–MgO composites with a dense structure. The mechanism of MgAlON synthesis is described as follows. Under an N2 atmosphere, the partial pressure of oxygen is quite low; thus, when the Al–Al2O3–MgO composites were soaked at 580°C for an extended period, aluminum metal was transformed into AlN. With increasing temperature, Al2O3 diffused into AlN crystal lattices and formed AlN-polytypoids; however, MgO reacted with Al2O3 to form MgAl2O4. When the temperature was greater than (1640 ± 10)°C, AlN diffused into Al2O3 and formed spinel-structured AlON. In situ MgAlON was acquired through a solid-solution reaction between AlON and MgAl2O4 at high temperatures because of their similar spinel structures.

Keywords

composites / metal aluminum / nitrogen atmosphere / magnesium aluminum oxynitride / reaction mechanism

Cite this article

Download citation ▾
Shang-hao Tong, Yong Li, Ming-wei Yan, Peng Jiang, Jia-jia Ma, Dan-dan Yue. In situ reaction mechanism of MgAlON in Al–Al2O3–MgO composites at 1700°C under flowing N2. International Journal of Minerals, Metallurgy, and Materials, 2017, 24(9): 1061-1066 DOI:10.1007/s12613-017-1496-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Olubambi P.A., Anddrews A., Mothle T.S. Strength behavior of magnesia-based refractories after thermal cycling. Int. J. Appl. Ceram. Tecbnol., 2014, 11(3): 524.

[2]

Wang H.J., Du S.C. Improvement of resistance to slag penetration in magnesia-based refractory with colloidal alumina addition II by means of a proper particle size distribution of MgO. Metall. Mater. Trans. B, 2016, 47(3): 1858.

[3]

Yang S.F., Li J.S., Wang Z.F., Li J., Lin L. Modification of MgO·Al2O3 spinel inclusions in Al-killed steel by Ca-treatment. Int. J. Miner. Metall. Mater., 2011, 18(1): 18.

[4]

Chen S.G., Gou Y.Z., Wang H., Wang J. Fabrication and characterization of precursor-derived non-oxide ZrC–SiC multiphase ultrahigh temperature ceramics. J. Eur. Ceram. Soc., 2016, 36(16): 3843.

[5]

Li X.L., Chen X.L., Ji H.M., Sun X.H., Zhao L.G. Phase analysis and thermal conductivity of in situ O'-sialon/ß-Si3N4 composites. Int. J. Miner. Metall. Mater., 2012, 19(8): 757.

[6]

Lee H.M., Lee E.B., Kim D.L., Kim D.K. Comparative study of oxide and non-oxide additives in high thermal conductive and high strength Si3N4. ceramics, Ceram. Int., 2016, 42(15): 17466.

[7]

Konegger T., Patidar R., Bordia R.K. A novel processing approach for free-standing porous non-oxide ceramic supports from polycarbosilane and polysilazane precursors. J. Eur. Ceram. Soc., 2015, 35(9): 2679.

[8]

Lejus A. Formation at high temperature of nonstoichiometric spinels and of derived phases in several oxide systems based on alumina and in the system alumina–aluminum nitride. Rev. Int. Hautes Temp. Refract., 1964, 1(1): 53.

[9]

Irene E.A., Silvestri V.J., Woolhouse G.R. Some properties of chemically vapor deposited films of AlxOyNz on silicon. J. Electron. Mater., 1975, 4(3): 409.

[10]

Yamaguchi G., Yanagida H. Study on the reductive spinel? a new spinel formula AlN–Al2O3 instead of the previous one Al3O4. Bull. Chem. Soc. Jpn., 1959, 32(11): 1264.

[11]

Kaplan S.S., Kurama S., Gunkaya G. Spinel nitrides transparent ceramics. J. Eur. Ceram. Soc., 2015, 35(12): 3255.

[12]

Liu Q., Jiang N., Li J., Sun K., Pan Y.B., Guo J.K. Highly transparent AlON ceramics sintered from powder synthesized by carbothermal reduction nitridation. Ceram. Int., 2016, 42(7): 8290.

[13]

Corbin N.D. Aluminum oxynitride spinel: A review. J. Eur. Ceram. Soc., 1989, 5(3): 143.

[14]

Wilk A., Rutkowski P., Zientara D., Bucko M.M. Aluminium oxynitride–hexagonal boron nitride composites with anisotropic properties. J. Eur. Ceram. Soc., 2016, 36(8): 2087.

[15]

Shan Y.C., Xu J.X., Wang G., Sun X.N., Liu G.H., Xu J.J., Li J.T. A fast pressureless sintering method for transparent AlON ceramics by using a bimodal particle size distribution powder. Ceram. Int., 2015, 41(3): 3992.

[16]

Willems H.X., Hendrix M.M.R.M., de With G., Metselaar R. Thermodynamics of Alon II: phase relations. J. Eur. Ceram. Soc., 1992, 10(4): 339.

[17]

Willems H.X., de With G., Metselaar R. Thermodynamics of Alon III: stabilization of Alon with MgO. J. Eur. Ceram. Soc., 1993, 12(1): 43.

[18]

Yang D., Zhang H., Zhong X. Study on preparation and mechanical property of MgO–MgAl2O4–MgAlON composite. Refractories, 2006, 40(1): 12.

[19]

Dai W.B., Lin W., Yamaguchi A., Ommyoji J., Yu J.K., Zou Z.S. Synthesis of magnesium aluminium oxynitride by carbothermal reduction and nitridation process. J. Ceram. Soc. Jpn., 2007, 115(1337): 42.

[20]

Pichlbauer S., Harmuth H., Lencéš Z., Šajgalík P. Preliminary investigations of the production of MgAlON bonded refractories. J. Eur. Ceram. Soc., 2012, 32(9): 2013.

[21]

Granon A., Goeuriat P., Thevenot F. Reactivity in the Al2O3–AlN–MgO system. The MgAlON spinel phase. J. Eur. Ceram. Soc., 1994, 13(4): 365.

[22]

Yang D.Y., Zhang H.Y., Zhong X.C. Study on preparation and mechanical property of MgO–MgAl2O4–MgAlON composites. Refractories, 2006, 40(1): 12.

[23]

Bandyopadhyay S., Rixecker G., Aldinger F., Maiti H.S. Effect of controlling parameters on the reaction sintering sequences of formation of nitrogen-containing magnesium aluminate spinel from MgO, Al2O3 and AlN. J. Am. Ceram. Soc., 2004, 87(3): 480.

[24]

Cannard P., Ekström T., Tilley R.J.D. The reaction of AlN with some metal oxides at high temperatures. J. Eur. Ceram. Soc., 1992, 9(1): 53.

[25]

Wang Q., Cui W., Ge Y.Y., Chen K., Xie Z.P. Preparation of spherical AlN granules directly by carbothermal reduction–nitridation method. J. Am. Ceram. Soc., 2015, 98(2): 392.

[26]

McCauley J.W., Patel P., Chen M.W., Gilde G., Strassburger E., Paliwal B., Ramesh K.T., Dandekar D.P. AlON: A brief history of its emergence and evolution. J. Eur. Ceram. Soc., 2009, 29(2): 223.

[27]

Yamaguchi G. On the refractive power of the lower valent Al ion (Al+ or Al2+) in the crystal. Bull. Chem. Soc. Jpn., 1950, 23(3): 89.

[28]

McCauley J.W. A simple model for aluminum oxynitride spinels. J. Am. Ceram. Soc., 1978, 61(7-8): 372.

[29]

Weiss J., Greil P., Gauckler L.J. The system Al–Mg–O–N. J. Am. Ceram. Soc., 1982, 65(5): 68.

AI Summary AI Mindmap
PDF

124

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/