Selective depression behavior of guar gum on talc-type scheelite flotation

Yong-zhong Zhang , Guo-hua Gu , Xiang-bin Wu , Kai-le Zhao

International Journal of Minerals, Metallurgy, and Materials ›› 2017, Vol. 24 ›› Issue (8) : 857 -862.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2017, Vol. 24 ›› Issue (8) : 857 -862. DOI: 10.1007/s12613-017-1470-x
Article

Selective depression behavior of guar gum on talc-type scheelite flotation

Author information +
History +
PDF

Abstract

The depression behavior and mechanism of guar gum on talc-type scheelite flotation were systematically investigated by flotation experiments, adsorption tests, zeta-potential measurements, and infrared spectroscopic analyses. The flotation results for monominerals, mixed minerals, and actual mineral samples indicated that guar gum exhibited much higher selective depression for talc than for scheelite. Bench-scale closed-circuit tests showed that a tungsten concentrate with a WO3 grade of 51.43% and a WO3 recovery of 76.18% was obtained. Adsorption tests, zeta-potential measurements, and infrared spectral analyses confirmed that guar gum absorbed more strongly onto the talc surface than onto the scheelite surface because of chemisorption between guar gum and talc. This chemisorption is responsible for the guar gum’s highly selective depression for talc and small depression for scheelite. The flotation results provide technical support for talc-type scheelite flotation.

Keywords

scheelite / talc / guar gum / flotation / depression mechanism

Cite this article

Download citation ▾
Yong-zhong Zhang, Guo-hua Gu, Xiang-bin Wu, Kai-le Zhao. Selective depression behavior of guar gum on talc-type scheelite flotation. International Journal of Minerals, Metallurgy, and Materials, 2017, 24(8): 857-862 DOI:10.1007/s12613-017-1470-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Jia M.X., Wang M.Y., Li Y.F., Sun C.Y. Characteristics of Chinese tungsten ore and the problems in the tungsten resource utilization. Min. Metall., 2013, 22(1): 90.

[2]

Yang X.F., Liu Q.J. Distribution of scheelite resources in China and current situation and advance of beneficiation of scheelite. Express Inf. Min. Ind., 2008, 4, 6.

[3]

Feng B., Luo X.P., Wang J.Q., Wang P.C. The flotation separation of scheelite from calcite using acidified sodium silicate as depressant. Miner. Eng., 2015, 80, 45.

[4]

Gao Y.S., Gao Z.Y., Sun W., Hu Y.H. Selective flotation of scheelite from calcite: A novel reagent scheme. Int. J. Miner. Process., 2016, 154, 10.

[5]

Wang J.J., Gao Z.Y., Gao Y.S., Hu Y.H., Sun W. Flotation separation of scheelite from calcite using mixed cationic/anionic collectors. Miner. Eng., 2016, 98, 261.

[6]

Yan Q., Wang J.Q., Feng B., Li T., Luo X.P. Research progress on flotation reagents for separation between scheelite and calcium gangue minerals at room temperature. Met. Mine, 2016, 45(5): 99.

[7]

Guimarães R.C., Araujo A.C., Peres A.E.C. Reagents in igneous phosphate ores flotation. Miner. Eng., 2005, 18(2): 199.

[8]

Ma X.D., Pawlik M. Adsorption of guar gum onto quartz from dilute mixed electrolyte solutions. J. Colloid Interface Sci., 2006, 298(2): 609.

[9]

Ma X.D., Pawlik M. Role of background ions in guar gum adsorption on oxide minerals and kaolinite. J. Colloid Interface Sci., 2007, 313(2): 440.

[10]

Wang J., Somasundaran P., Nagaraj D.R. Adsorption mechanism of guar gum at solid–liquid interfaces. Miner. Eng., 2005, 18(1): 77.

[11]

Feng D.W., Aldrich C. Effect of ultrasonication on the flotation of talc. Ind. Eng. Chem. Res., 2004, 43(15): 4422.

[12]

Beattie D.A., Huynh L., Kaggwa G.B.N., Ralston J. The effect of polysaccharides and polyacrylamides on the depression of talc and the flotation of sulphide minerals. Miner. Eng., 2006, 19(6-8): 598.

[13]

Yang Y.J., Jiang R.Z., Chen Y.H., Zhang P., Gao Q.P. Determination of sugars in heteropolysaccharide by phenol- sulfuric acid method. Chin. Tradit. Patent Med., 2005, 27(6): 706.

[14]

Yang Y.H., Sun W., Liu H.W. The research on the depressing ability of tungsten minerals and calcium-bearing minerals under highly selective combine depressor D1. Nonferrous Met. Miner. Process. Sec., 2009, 6, 50.

[15]

Zhao K.L., Gu G.H., Wang C.L., Rao X.Y., Wang X.H., Xiong X.X. The effect of a new polysaccharide on the depression of talc and the flotation of a nickel–copper sulfide ore. Miner. Eng., 2015, 77(6): 99.

[16]

Mudgil D., Barak S., Khatkar B.S. X-ray diffraction, IR spectroscopy and thermal characterization of partially hydrolyzed guar gum. Int. J. Biol. Macromol., 2012, 50(4): 1035.

[17]

Parvathy K.S., Susheelamma N.S., Tharanathan R.N., Gaonkar A. K. A simple non-aqueous method for carboxymethylation of galactomannans. Carbohydr. Polym., 2005, 62(2): 137.

[18]

Deng L.Q., Zhao G., Zhong H., Wang S., Liu G.Y. Investigation on the selectivity of N-((hydroxyamino)-alkyl) alkylamide surfactants for scheelite/calcite flotation separation. J. Ind. Eng. Chem., 2016, 33, 131.

[19]

Lai X., Wei Y.Y., Qin D., Zhao Y., Wu Y., Gao D.J., Bi J., Lin D.M., Xu G.L. Controlled synthesis of CaWO4 microcrystalline via surfactant-assisted precipitation method. Integr. Ferroelectr., 2013, 142(1): 7.

AI Summary AI Mindmap
PDF

148

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/