Phase transformation and crystal growth behavior of 8mol% (SmO1.5, GdO1.5, and YO1.5) stabilized ZrO2 powders

R. Mahendran , S. P. Kumaresh Babu , S. Natarajan , S. Manivannan , A. Vallimanalan

International Journal of Minerals, Metallurgy, and Materials ›› 2017, Vol. 24 ›› Issue (7) : 842 -849.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2017, Vol. 24 ›› Issue (7) : 842 -849. DOI: 10.1007/s12613-017-1468-4
Article

Phase transformation and crystal growth behavior of 8mol% (SmO1.5, GdO1.5, and YO1.5) stabilized ZrO2 powders

Author information +
History +
PDF

Abstract

Nanocrystalline powders of ZrO2–8mol%SmO1.5 (8SmSZ), ZrO2–8mol%GdO1.5 (8GdSZ), and ZrO2–8mol%YO1.5 (8YSZ) were prepared by a simple reverse-coprecipitation technique. Differential thermal analysis/thermogravimetry (DTA/TG), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), Raman spectroscopy, and high-resolution transmission electron microscopy (HRTEM) were used to study the phase transformation and crystal growth behavior. The DTA results showed that the ZrO2 freeze-dried precipitates crystallized at 529, 465, and 467°C in the case of 8SmSZ, 8GdSZ, and 8YSZ, respectively. The XRD and Raman results confirmed the presence of tetragonal ZrO2 when the dried precipitates were calcined in the temperature range from 600 to 1000°C for 2 h. The crystallite size increased with increasing calcination temperature. The activation energies were calculated as 12.39, 12.45, and 16.59 kJ/mol for 8SmSZ, 8GdSZ, and 8YSZ respectively.

Keywords

zirconia / thermal analysis / reverse coprecipitation / activation energy

Cite this article

Download citation ▾
R. Mahendran, S. P. Kumaresh Babu, S. Natarajan, S. Manivannan, A. Vallimanalan. Phase transformation and crystal growth behavior of 8mol% (SmO1.5, GdO1.5, and YO1.5) stabilized ZrO2 powders. International Journal of Minerals, Metallurgy, and Materials, 2017, 24(7): 842-849 DOI:10.1007/s12613-017-1468-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Padture NP, Gell M, Jordan EH. Thermal barrier coatings for gas-turbine engine applications. Science, 2002, 296(5566): 280.

[2]

Clarke DR, Oechsner M, Padture NP. Thermal-barrier coatings for more efficient gas-turbine engines. MRS Bull., 2012, 37(10): 891.

[3]

Zhang YL, Guo L, Yang YP, Guo HB, Zhang HJ, Gong SK. Influence of Gd2O3 and Yb2O3 Co-doping on phase stability, thermo-physical properties and sintering of 8YSZ. Chin. J. Aeronaut., 2012, 25(6): 948.

[4]

Feng J, Ren XR, Wang XY, Zhou R, Pan W. Thermal conductivity of ytterbia-stabilized zirconia. Scripta Mater., 2012, 66(1): 41.

[5]

Sun LL, Guo HB, Peng H, Gong SK, Xu HB. Influence of partial substitution of Sc2O3 with Gd2O3 on the phase stability and thermal conductivity of Sc2O3-doped ZrO2. Ceram. Int., 2013, 39(3): 3447.

[6]

Liu HF, Li SL, Li QL, Li YM. Investigation on the phase stability, sintering and thermal conductivity of Sc2O3-Y2O3-ZrO2 for thermal barrier coating application. Mater. Des., 2010, 31(6): 2972.

[7]

Li QL, Cui XZ, Li SQ, Yang WH, Wang C, Cao Q. Synthesis and phase stability of scandia, gadolinia, and ytterbia Co-doped zirconia for thermal barrier coating application. J. Therm. Spray Technol., 2015, 24(1): 136.

[8]

Zhu DM, Chen YL, Miller RA. Defect clustering and nanophase structure characterization of multi-component rare earth-oxide-doped zirconia-yttria thermal barrier coatings. Ceram. Eng. Sci. Proc., 2003, 24(3): 525.

[9]

Ponnuchamy MB, Gandhi AS. Phase and fracture toughness evolution during isothermal annealing of spark plasma sintered zirconia co-doped with Yb, Gd and Nd oxides. J. Eur. Ceram. Soc., 2015, 35(6): 1879.

[10]

Zhou YJ, Yuan WH, Huang QL, Huang WZ, Cheng HF, Liu HT. Effect of Y2O3 addition on the phase composition and crystal growth behavior of YSZ nanocrystals prepared via coprecipitation process. Ceram. Int., 2015, 41(9): 10702.

[11]

Kuo CW, Shen YH, Hung IM, Wen SB, Lee HE, Wang MC. Effect of Y2O3 addition on the crystal growth and sintering behavior of YSZ nanopowders prepared by a sol–gel process. J. Alloys Compd., 2009, 472(1-2): 186.

[12]

Chen SG, Yin YS, Wang DP, Li J. Reduced activation energy and crystalline size for yttria-stabilized zirconia nano-crystals: an experimental and theoretical study. J. Cryst. Growth, 2004, 267(1-2): 100.

[13]

Lee YH, Kuo CW, Hung IM, Fung KZ, Wang MC. The thermal behavior of 8mol% yttria-stabilized zirconia nanocrystallites prepared by a sol–gel process. J. Non-Cryst. Solids, 2005, 351(49): 3709.

[14]

Chu HL, Hwang WS, Du JK, Chen KK, Wang MC. Effect of SrO addition on the growth behavior of ZrO2-3Y2O3 precursor powders synthesized by a coprecipitation process. Ceram. Int., 2016, 42(8): 10251.

[15]

Loganathan A, Gandhi AS. Fracture toughness of t’ ZrO2 stabilised with MO1.5 (M =Y, Yb & Gd) for thermal barrier application. Trans. Indian Inst. Met., 2011, 64(1): 71.

[16]

Khollam YB, Deshpande AS, Patil AJ, Potdar HS, Deshpande SB, Date SK. Synthesis of yttria stabilized cubic zirconia (YSZ) powders by microwave-hydrothermal route. Mater. Chem. Phys., 2001, 71(3): 235.

[17]

Gonzalo I, Ferrari B, Colomer MT. Influence of the urea content on the YSZ hydrothermal synthesis under dilute conditions and its role as dispersant agent in the post-reaction medium. J. Eur. Ceram. Soc., 2009, 29(15): 3185.

[18]

Huang QL, Yuan WH, Huang WZ, Cheng HF, Zhou YJ, Liu HT. Effect of organic additions on the phase composition and crystal growth behavior of 8wt% yttria-stabilized zirconia nanocrystals prepared via sol–gel process. J. Sol-Gel Sci. Technol., 2015, 74(2): 432.

[19]

Suciu C, Hoffmann AC, Vik A, Goga F. Effect of calcination conditions and precursor proportions on the properties of YSZ nanoparticles obtained by modified sol–gel route. Chem. Eng. J., 2008, 138(1-3): 608.

[20]

Wang JA, Valenzuela MA, Salmones J, Vázquez A, Garcia-Ruiz A, Bokhimi X. Comparative study of nanocrystalline zirconia prepared by precipitation and sol–gel methods. Catal. Today, 2001, 68(1-3): 21.

[21]

Sharma PK, Nass R, Schmidt H. Effect of solvent, host precursor, dopant concentration and crystallite size on the fluorescence properties of Eu(III) doped yttria. Opt. Mater., 1998, 10(2): 161.

[22]

Richardson K, Akinc M. Preparation of spherical yttrium oxide powders using emulsion evaporation. Ceram. Int., 1987, 13(4): 253.

[23]

Lopez T, Sanchez E, Bosch P, Meas Y, Gomez R. FTIR and UV-Vis (diffuse reflectance) spectroscopic characterization of TiO2 sol–gel. Mater. Chem. Phys., 1992, 32(2): 141.

[24]

Lee HE, Du JK, Sie YY, Wang CH, Wu JH, Wang CL, Hwang WS, Huang HH, Li WL, Wang MC. Thermal properties and phase transformation of 2mol% Y2O3–PSZ nanopowders prepared by a Co-precipitation process. J. Non-Cryst. Solids, 2011, 357(10): 2103.

[25]

Shukla S, Seal S, Vij R, Bandyopadhyay S. Reduced activation energy for grain growth in nanocrystalline yttria-stabilized zirconia. Nano Lett., 2003, 3(3): 397.

[26]

Ho SM. On the structural chemistry of zirconium oxide. Mater. Sci. Eng., 1982, 54(1): 23.

[27]

Hsu YW, Yang KH, Chang KM, Yeh SW, Wang MC. Synthesis and crystallization behavior of 3mol% yttria stabilized tetragonal zirconia polycrystals (3Y–TZP) nanosized powders prepared using a simple co-precipitation process. J. Alloys Compd., 2011, 509(24): 6864.

[28]

Chraska T, King AH, Berndt CC. On the size-dependent phase transformation in nanoparticulate zirconia. Mater. Sci. Eng. A, 2000, 286(1): 169.

[29]

Garvie RC, Hannink RH, Pascoe RT. Ceramic steel?. Nature, 1975, 258, 703.

[30]

Kim DJ, Jung HJ, Yang IS. Raman spectroscopy of tetragonal zirconia solid solution. J. Am. Ceram. Soc., 1993, 76(8): 2106.

[31]

Qu L, Choy KL. Thermophysical and thermochemical properties of new thermal barrier materials based on Dy2O3–Y2O3 co-doped zirconia. Ceram. Int., 2014, 40(8): 11593.

[32]

Niu XQ, Xie M, Zhou F, Mu RD, Song XW, An SL. Substituent influence of yttria by gadolinia on the tetragonal phase stability for Y2O3–Ta2O5–ZrO2 ceramics at 1300°C. J. Mater. Sci. Technol., 2014, 30(4): 381.

[33]

Limarga AM, Iveland J, Gentleman M, Lipkin DM, Clarke DR. The use of Larson-Miller parameters to monitor the evolution of Raman lines of tetragonal zirconia with high temperature aging. Acta Mater., 2011, 59(3): 1162.

[34]

Wang CH, Wang MC, Du JK, Sie YY, Hsi CS, Lee HE. Phase transformation and nanocrystallite growth behavior of 2mol% yttria-partially stabilized zirconia (2Y–PSZ) powders. Ceram. Int., 2013, 39(5): 5165.

[35]

Kuo CW, Lee KC, Yen FL, Shen YH, Lee HE, Wen SB, Wang MC, Stack MM. Growth kinetics of tetragonal and monoclinic ZrO2 crystallites in 3mol% yttria partially stabilized ZrO2 (3Y–PSZ) precursor powder. J. Alloys Compd., 2014, 592, 288.

AI Summary AI Mindmap
PDF

139

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/