Microwave absorption properties of SiC@SiO2@Fe3O4 hybrids in the 2–18 GHz range

Peng Zhou , Jun-hong Chen , Meng Liu , Peng Jiang , Bin Li , Xin-mei Hou

International Journal of Minerals, Metallurgy, and Materials ›› 2017, Vol. 24 ›› Issue (7) : 804 -813.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2017, Vol. 24 ›› Issue (7) : 804 -813. DOI: 10.1007/s12613-017-1464-8
Article

Microwave absorption properties of SiC@SiO2@Fe3O4 hybrids in the 2–18 GHz range

Author information +
History +
PDF

Abstract

To enhance the microwave absorption performance of silicon carbide nanowires (SiCNWs), SiO2 nanoshells with a thickness of approximately 2 nm and Fe3O4 nanoparticles were grown on the surface of SiCNWs to form SiC@SiO2@Fe3O4 hybrids. The microwave absorption performance of the SiC@SiO2@Fe3O4 hybrids with different thicknesses was investigated in the frequency range from 2 to 18 GHz using a free-space antenna-based system. The results indicate that SiC@SiO2@Fe3O4 hybrids exhibit improved microwave absorption. In particular, in the case of an SiC@SiO2 to iron(III) acetylacetonate mass ratio of 1:3, the microwave absorption with an absorber of 2-mm thickness exhibited a minimum reflection loss of −39.58 dB at 12.24 GHz. With respect to the enhanced microwave absorption mechanism, the Fe3O4 nanoparticles coated on SiC@SiO2 nanowires are proposed to balance the permeability and permittivity of the materials, contributing to the microwave attenuation.

Keywords

silicon carbide nanowires / hybrids / microwave absorption / mechanism / impedance match

Cite this article

Download citation ▾
Peng Zhou, Jun-hong Chen, Meng Liu, Peng Jiang, Bin Li, Xin-mei Hou. Microwave absorption properties of SiC@SiO2@Fe3O4 hybrids in the 2–18 GHz range. International Journal of Minerals, Metallurgy, and Materials, 2017, 24(7): 804-813 DOI:10.1007/s12613-017-1464-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Yu M, Liang CY, Liu MM, Liu XL, Yuan KP, Cao H, Che RC. Yolk–shell Fe3O4@ZrO2 prepared by a tunable polymer surfactant assisted sol-gel method for high temperature stable microwave absorption. J. Mater. Chem. C, 2014, 2, 7275.

[2]

Sun H, Che RH, You X, Jiang YS, Yang ZB, Deng J, Qiu LB, Peng HS. Cross-stacking aligned carbon-nanotube films to tune microwave absorption frequencies and increase absorption intensities. Adv. Mater., 2014, 26(48): 8120.

[3]

Song WL, Cao MS, Fan LZ, Lu MM, Li Y, Wang CY, Ju HF. Highly ordered porous carbon/wax composites for effective electromagnetic attenuation and shielding. Carbon, 2014, 77, 130.

[4]

Vázquez E, Prato M. Carbon nanotubes and microwaves: interactions, responses, and applications. ACS Nano, 2009, 3(12): 3819.

[5]

Song WL, Guan XT, Fan LZ, Zhao YB, Cao WQ, Wang CY, Cao MS. Strong and thermostable polymeric graphene/silica textile for lightweight practical microwave absorption composites. Carbon, 2016, 100, 109.

[6]

Kuang JL, Cao WB. Silicon carbide whiskers: preparation and high dielectric permittivity. J. Am. Ceram. Soc., 2013, 96, 2877.

[7]

Chen SL, Ying PZ, Wang L, Wei GD, Gao FM, Zheng JJ, Shang MH, Yang ZB, Yang WY, Wu T. Highly flexible and robust N-doped SiC nanoneedle field emitters. NPG Asia Mater., 2015, 7, e157.

[8]

Yang HJ, Yuan J, Li Y, Hou ZL, Jin HB, Fang XY, Cao MS. Silicon carbide powders: temperature-dependent dielectric properties and enhanced microwave absorption at gigahertz range. Solid State Commun., 2013, 163, 1.

[9]

Cao MS, Song WL, Hou ZL, Wen B, Yuan J. The effects of temperature and frequency on the dielectric properties, electromagnetic interference shielding and microwave- absorption of short carbon fiber/silica composites. Carbon, 2010, 48(3): 788.

[10]

Kong LB, Li ZW, Liu L, Huang R, Abshinova M, Yang ZH, Tang CB, Tan PK, Deng CR, Matitsine S. Recent progress in some composite materials and structures for specific electromagnetic applications. Int. Mater. Rev., 2013, 58(4): 203.

[11]

Yin XW, Kong L, Zhang LT, Cheng LF, Travitzky N, Greil P. Electromagnetic properties of Si–C–N based ceramics and composites. Int. Mater. Rev., 2014, 59(6): 326.

[12]

Kong L, Yin XW, Zhang YJ, Yuan XY, Li Q, Ye F, Cheng LF, Zhang LT. Electromagnetic wave absorption properties of reduced graphene oxide modified by maghemite colloidal nanoparticle clusters. J. Phys. Chem. C, 2013, 117(38): 19701.

[13]

Duan WY, Yin XW, Ye F, Li Q, Han MK, Liu XF, Cai YZ. Synthesis and EMW absorbing properties of nano SiC modified PDC–SiOC. J. Mater. Chem. C, 2016, 4, 5962.

[14]

Sun DP, Zou Q, Qian GQ, Sun C, Jiang W, Li FS. Controlled synthesis of porous Fe3O4-decorated graphene with extraordinary electromagnetic wave absorption properties. Acta Mater., 2013, 61(15): 5829.

[15]

Zhang XS, Meng B, Zhu FY, Tang W, Zhang HX. Switchable wetting and flexible SiC thin film with nanostructures for microfluidic surface-enhanced Raman scattering sensors. Sens. Actuators A, 2014, 208, 166.

[16]

Chen JH, Zhai FM, Liu M, Hou XM, Chou KC. SiC nanowires with tunable hydrophobicity/hydrophilicity and their application as nanofluids. Langmuir, 2016, 32(23): 5909.

[17]

Zhang YJ, Chen JH, Fan HL, Chou KC, Hou XM. Characterization of modified SiC@SiO2 nanocables/MnO2 and their potential application as hybrid electrodes for supercapacitors. Dalton Trans., 2015, 44(46): 19974.

[18]

Zhang L, Shao HP, Zheng H, Lin T, Guo ZM. Synthesis and characterization of Fe3O4@SiO2 magnetic composite nanoparticles by a one-pot process. Int. J. Miner. Metall. Mater., 2016, 23(9): 1112.

[19]

Mousavi Ghahfarokhi SE, Hosseini S, Zargar Shoushtari M. Fabrication of SrFe12-xNixO19 nanoparticles and investigation on their structural, magnetic and dielectric properties. Int. J. Miner. Metall. Mater., 2015, 22(8): 876.

[20]

Gong CH, Zhang JW, Yan C, Cheng XQ, Zhang JW, Yu LG, Jin ZS, Zhang ZJ. Synthesis and microwave electromagnetic properties of nanosized titanium nitride. J. Mater. Chem., 2012, 22(8): 3370.

[21]

Weir WB. Automatic measurements of complex dielectric constant and permeability at microwave frequencies. Proc. IEEE, 1974, 62(1): 33.

[22]

Chen JH, Liu WN, Yang T, Li B, Su JD, Hou XM, Chou KC. A facile synthesis of a three-dimensional flexible 3C-SiC sponge and its wettability. Cryst. Growth Des., 2014, 14(9): 4624.

[23]

Chen JH, Zhang YJ, Hou XM, Su L, Fan HL, Chou KC. Fabrication and characterization of ultra-light SiC whiskers decorated by RuO2 nanoparticles as hybrid supercapacitors. RSC Adv., 2016, 6(23): 19626.

[24]

Wang ZJ, Wu LN, Zhou JG, Cai W, Shen BZ, Jiang ZH. Magnetite nanocrystals on multiwalled carbon nanotubes as a synergistic microwave absorber. J. Phys. Chem. C, 2013, 117(10): 5446.

[25]

Wu ZS, Yang SB, Sun Y, Parvez K, Feng XL, Müllen K. 3D nitrogen-doped graphene aerogel-supported Fe3O4 nanoparticles as efficient electrocatalysts for the oxygen reduction reaction. J. Am. Chem. Soc., 2012, 134(22): 9082.

[26]

Pirzada T, Arvidson SA, Saquing CD, Shah SS, Khan SA. Hybrid silica–PVA nanofibers via sol-gel electrospinning. Langmuir, 2012, 28(13): 5834.

[27]

Lin LW. Synthesis and optical property of large-scale centimetres- long silicon carbide nanowires by catalyst-free CVD route under superatmospheric pressure conditions. Nanoscale, 2011, 3(4): 1582.

[28]

Mansur HS, Sadahira CM, Souza AN, Mansur AAP. FTIR spectroscopy characterization of poly (vinyl alcohol) hydrogel with different hydrolysis degree and chemically crosslinked with glutaraldehyde. Mater. Sci. Eng. C, 2008, 28(4): 539.

[29]

de Faria DLA, Silva SV, de Oliveira MT. Raman microspectroscopy of some iron oxides and oxyhydroxides. J. Raman Spectrosc., 1997, 28(11): 873.

[30]

Huang X, Zhuang J, Chen D, Liu H, Tang F, Yan X, Meng X, Zhang L, Ren J. General strategy for designing functionalized magnetic microspheres for different bioapplications. Langmuir, 2009, 25(19): 11657.

[31]

Kim K, Kim M, Kim J, Kim J. Magnetic filler alignment of paramagnetic Fe3O4 coated SiC/epoxy composite for thermal conductivity improvement. Ceram. Int., 2015, 41(9): 12280.

[32]

Yoon T, Chae C, Sun YK, Zhao X, Kung HH, Lee JK. Bottom-up in situ formation of Fe3O4 nanocrystals in a porous carbon foam for lithium-ion battery anodes. J. Mater. Chem., 2011, 21(43): 17325.

[33]

Shimoda K, Park JS, Hinoki T, Kohyama A. Influence of surface structure of SiC nano-sized powder analyzed by X-ray photoelectron spectroscopy on basic powder characteristics. Appl. Surf. Sci., 2007, 253(24): 9450.

[34]

Sun DP, Zou Q, Wang YP, Wang YJ, Jiang W, Li FS. Controllable synthesis of porous Fe3O4@ZnO sphere decorated graphene for extraordinary electromagnetic wave absorption. Nanoscale, 2014, 6(12): 6557.

[35]

Chen YJ, Cao MS, Wang TH, Wan Q. Microwave absorption properties of the ZnO nanowire-polyester composites. Appl. Phys. Lett., 2004, 84(17): 3367.

[36]

Su XL, Zhou WC, Li ZM, Luo F, Du HL, Zhu DM. Preparation and dielectric properties of B-doped SiC powders by combustion synthesis. Mater. Res. Bull., 2009, 44(4): 880.

[37]

J. Appl. Phys., 2009, 106(5)

[38]

Chen YJ, Xiao G, Wang TS, Ouyang QY, Qi LH, Ma Y, Gao P, Zhu CL, Cao MS, Jin HB. Porous Fe3O4/carbon core/shell nanorods: synthesis and electromagnetic properties. J. Phys. Chem. C, 2011, 115, 10061.

[39]

Chen YJ, Zhang F, Zhao GG, Fang XY, Jin HB, Gao P, Zhu CL, Cao MS, Xiao G. Synthesis, multi-nonlinear dielectric resonance and excellent electromagnetic absorption characteristics of Fe3O4/ZnO core/shell nanorods. J. Phys. Chem. C, 2010, 114(20): 9239.

[40]

Cao MS, Yang J, Song WL, Zhang DQ, Wen B, Hou HB, Yuan ZL, Yuan J. Ferroferric oxide/multiwalled carbon nanotube vs polyaniline/ferroferric oxide/multiwalled carbon nanotube multiheterostructures for highly effective microwave absorption. ACS Appl. Mater. Interfaces, 2012, 4(12): 6949.

[41]

Kim SS, Jo SB, Gueon KI, Choi KK, Kim JM, Churn KS. Complex permeability and permittivity and microwave absorption of ferrite-rubber composite at X-band frequencies. IEEE Trans. Magn., 1991, 27(6): 5462.

[42]

Chiu SC, Yu HC, Li YY. High electromagnetic wave absorption performance of silicon carbide nanowires in the gigahertz range. J. Phys. Chem. C, 2010, 114(4): 1947.

[43]

Yang HJ, Cao MS, Li Y, Shi HL, Hou ZL, Fang XY, Jin HB, Wang WZ, Yuan J. Enhanced dielectric properties and excellent microwave absorption of SiC powders driven with NiO nanorings. Adv. Opt. Mater., 2014, 2(3): 214.

[44]

Xie S, Jin GQ, Meng S, Wang YW, Qin Y, Guo XY. Microwave absorption properties of in situ grown CNTs/SiC composites. J. Alloys Compd., 2012, 520, 295.

[45]

Yang RB, Reddy PM, Chang CJ, Chen PA, Chen JK, Chang CC. Synthesis and characterization of Fe3O4/polypyrrole/carbon nanotube composites with tunable microwave absorption properties: Role of carbon nanotube and polypyrrole content. Chem. Eng. J., 2016, 285, 497.

[46]

Wang ZJ, Wu LN, Zhou JG, Shen BZ, Jiang ZH. Enhanced microwave absorption of Fe3O4 nanocrystals after heterogeneously growing with ZnO nanoshell. RSC Adv., 2013, 3, 3309.

[47]

Nanotechnology, 2010, 21(9)

[48]

Appl. Phys. Lett., 2007, 90(19)

AI Summary AI Mindmap
PDF

121

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/