Microwave hydrothermal synthesis and characterization of rare-earth stannate nanoparticles

Shuang Huang , Hua-lan Xu , Sheng-liang Zhong , Lei Wang

International Journal of Minerals, Metallurgy, and Materials ›› 2017, Vol. 24 ›› Issue (7) : 794 -803.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2017, Vol. 24 ›› Issue (7) : 794 -803. DOI: 10.1007/s12613-017-1463-9
Article

Microwave hydrothermal synthesis and characterization of rare-earth stannate nanoparticles

Author information +
History +
PDF

Abstract

Rare-earth stannate (Ln2Sn2O7 (Ln = Y, La–Lu)) nanocrystals with an average diameter of 50 nm were prepared through a facile microwave hydrothermal method at 200°C within 60 min. The products were well characterized. The effect of reaction parameters such as temperature, reaction time, pH value, and alkali source on the preparation was investigated. The results revealed that the pH value plays an important role in the formation process of gadolinium stannate (Gd2Sn2O7) nanoparticles. By contrast, the alkali source had no effect on the phase composition or morphology of the final product. Uniform and sphere-like nanoparticles with an average size of approximately 50 nm were obtained at the pH value of 11.5. A possible formation mechanism was briefly proposed. Gd2Sn2O7:Eu3+ nanoparticles displayed strong orange-red emission. Magnetic measurements revealed that Gd2Sn2O7 nanoparticles were paramagnetic. The other rare-earth stannate Ln2Sn2O7 (Ln = Y, La–Lu) nanocrystals were prepared by similar approaches.

Keywords

microwave / hydrothermal synthesis / rare-earth stannate / nanoparticles

Cite this article

Download citation ▾
Shuang Huang, Hua-lan Xu, Sheng-liang Zhong, Lei Wang. Microwave hydrothermal synthesis and characterization of rare-earth stannate nanoparticles. International Journal of Minerals, Metallurgy, and Materials, 2017, 24(7): 794-803 DOI:10.1007/s12613-017-1463-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Qu ZX, Wan CL, Pan W. Thermophysical properties of rare-earth stannates: effect of pyrochlore structure. Acta Mater., 2012, 60(6-7): 2939.

[2]

Lian J, Helean KB, Kennedy BJ, Wang LM, Navrotsky A, Ewing RC. Effect of structure and thermodynamic stability on the response of lanthanide stannate- pyrochlores to ion beam irradiation. J. Phys. Chem. B, 2006, 110(5): 2343.

[3]

Kong LG, Karatchevtseva I, Blackford MG, Scales N, Triani G. Aqueous chemical synthesis of Ln2Sn2O7 pyrochlore-structured ceramics. J. Am. Ceram. Soc., 2013, 96(9): 2994.

[4]

Wang WJ, Liang SJ, Bi JH, Yu JC, Wong PK, Wu L. Lanthanide stannate pyrochlores Ln2Sn2O7 (Ln = Nd, Sm, Eu, Gd, Er, Yb) nanocrystals: synthesis, characterization, and photocatalytic properties. Mater. Res. Bull., 2014, 56, 86.

[5]

Zeng J, Wang H, Zhang YC, Zhu MK, Yan H. Hydrothermal synthesis and photocatalytic properties of pyrochlore Ln2Sn2O7 nanocubes. J. Phys. Chem. C, 2007, 111(32): 11879.

[6]

Dohnalová Z, Šulcová P, Trojan M. Preparation and selected properties of pigments on base of Ln-doped CaSnO3. J. Therm. Anal. Calorim., 2008, 93(3): 857.

[7]

Biswas AA, Jana YM. Estimation of single-ion anisotropies, crystal-field and exchange interactions in Gd-based frustrated pyrochlore anti-ferromagnets Gd2M2O7 (M = Ti, Sn, Hf, Zr). J. Magn. Magn. Mater., 2011, 323(24): 3202.

[8]

R.S. Freitas and J.S. Gardner, The magnetic phase diagram of Gd2Sn2O7, J. Phys. Condens. Matter., 23(2011), art. No. 164215.

[9]

J.R. Stewart, J.S. Gardner, Y. Qiu, and G. Ehlers, Collective dynamics in the Heisenberg pyrochlore antiferromagnet Gd2Sn2O7, Phys. Rev. B, 78(2008), art. No. 132410.

[10]

Yang JY, Su YC, Li HB, Liu XY, Chen Z. Hydrothermal synthesis and photoluminescence of Ce3+ and Tb3+ doped Ln2Sn2O7 nanocrystals. J. Alloys Compd., 2011, 509(31): 8008.

[11]

Jin DL, Yu XJ, Yang H, Zhu HL, Wang LN, Zheng YF. Hydrothermal synthesis and luminescence properties of Yb3+ doped rare earth stannates. J. Alloys. Compd., 2009, 474(1-2): 557.

[12]

Ege A, Ayvacikli M, Dincer O, Satilmis SU. Spectral emission of rare earth (Tb, Eu, Dy) doped Y2Sn2O7 phosphors. J. Lumin., 2013, 143, 653.

[13]

E. Moreira, J.M. Henriques, D.L. Azevedo, E.W.S. Caetano, V.N. Freire, U.L. Fulco, and E.L. Albuquerque, Structural and optoelectronic properties, and infrared spectrum of cubic BaSnO3 from first principles calculations, J. Appl. Phys., 112(2012), art. No. 043703.

[14]

Feng J, Xiao B, Zhou R, Pan W. Thermal expansion and conductivity of RE2Sn2O7 (RE = La, Nd, Sm, Gd, Er and Yb) pyrochlores. Scripta Mater., 2013, 69(5): 401.

[15]

Yang JY, Su YC, Liu XY. Hydrothermal synthesis, characterization and optical properties of Ln2Sn2O7:Eu3+ micro-octahedra. Trans. Nonferrous Met. Soc. China, 2011, 21(3): 535.

[16]

Fu ZL, Gong WD, Li HY, Wu Q, Li WH, Yang HK, Jeong JH. Synthesis and spectral properties of nanocrystalline Eu3+-doped pyrochlore oxide M2Sn2O7 (M = Gd and Y), Curr. Appl. Phys., 2011, 11(3): 933.

[17]

Mitchell MR, Reader SW, Johnston KE, Pickard CJ, Whittle KR, Ashbrook SE. 119Sn MAS NMR and first-principles calculations for the investigation of disorder in stannate pyrochlores. Phys. Chem. Chem. Phys., 2011, 13(2): 488.

[18]

Eurenius KEJ, Ahlberg E, Knee CS. Proton conductivity in Sm2Sn2O7 pyrochlores. Solid State Ionics, 2010, 181(35-36): 1577.

[19]

Zhu HL, Jin DL, Zhu LM, Yang H, Yao KH, Xi ZQ. A general hydrothermal route to synthesis of nanocrystalline lanthanide stannates: Ln2Sn2O7 (Ln = Y, La-Yb). J. Alloys Compd., 2008, 464(1-2): 508.

[20]

Tian JS, Peng HG, Xu XL, Liu WM, Ma YH, Wang X, Yang XJ. High surface area Ln2Sn2O7 pyrochlore as a novel, active and stable support for Pd for CO oxidation. Catal. Sci. Technol., 2015, 5(4): 2270.

[21]

Fu Z, Yang HK, Moon BK, Choi BC, Jeong JH. Ln2Sn2O7:Eu3+ micronanospheres: hydrothermal synthesis and luminescent properties. Cryst. Growth Des., 2009, 9(1): 616.

[22]

Nanotechnology, 2008, 19(2)

[23]

Lu ZG, Wang JW, Tang YG, Li YD. Synthesis and photoluminescence of Eu3+-doped Y2Sn2O7 nanocrystals. J. Solid State Chem., 2004, 177(9): 3075.

[24]

Lopez-Navarrete E, Orera VM, Lazaro FJ, Carda JB, Ocana M. Preparation through aerosols of Cr-doped Y2Sn2O7 (pyrochlore) red-shade pigments and determination of the Cr oxidation state. J. Am. Ceram. Soc., 2004, 87(11): 2108.

[25]

Maestre D, Hernández E, Cremades A, Amati M, Piqueras J. Synthesis and characterization of small dimensional structures of Er-doped SnO2 and erbium-tin-oxide. Cryst. Growth Des., 2012, 12(5): 2478.

[26]

Wang SM, Xiu ZL, MK, Zhang AY, Zhou YY, Yang ZS. Combustion synthesis and luminescent properties of Dy3+-doped Ln2Sn2O7 nanocrystals. Mater. Sci. Eng. B, 2007, 143(1-3): 90.

[27]

Wang SM, Zhou GJ, Lu MK, Zhou YY, Wang SF, Yang ZS. Synthesis and characterization of lanthanum stannate nanoparticles. J. Am. Ceram. Soc., 2006, 89(9): 2956.

[28]

Gawande MB, Shelke SN, Zboril R, Varma RS. Microwave- assisted chemistry: synthetic applications for rapid assembly of nanomaterials and organics. Acc. Chem. Res., 2014, 47(4): 1338.

[29]

Zhu YJ, Chen F. Microwave-assisted preparation of inorganic nanostructures in liquid phase. Chem. Rev., 2014, 114(12): 6462.

[30]

Dahl JA, Maddux BLS, Hutchison JE. Toward greener nanosynthesis. Chem. Rev., 2007, 107(6): 2228.

[31]

Yang C, Wang JD, Xiao F, Su XT. Microwave hydrothermal disassembly for evolution from CuO dendrites to nanosheets and their applications in catalysis and photo-catalysis. Powder Technol., 2014, 264, 36.

[32]

Rizzuti A, Dassisti M, Mastrorilli P, Sportelli MC, Cioffi N, Picca RA, Agostinelli E, Varvaro G, Caliandro R. Shape-control by microwave-assisted hydrothermal method for the synthesis of magnetite nanoparticles using organic additives. J. Nanopart. Res., 2015, 17(10): 408.

[33]

Shi MM, Wang L, Nie ZW, Zhao YX, Zhong SL, Zeng CH. Straw-sheaf-like terbium-based coordination polymer architectures: microwave-assisted synthesis and their application as selective luminescent probes for heavy metal ions. New J. Chem., 2015, 39(4): 2973.

[34]

Zhong SL, Jing HY, Li Y, Yin SG, Zeng CH, Wang L. Coordination polymer submicrospheres: fast microwave synthesis and their conversion under different atmospheres. Inorg. Chem., 2014, 53(16): 8278.

[35]

Trujillano R, Rives V, Douma M, Chtoun EH. Microwave hydrothermal synthesis of A2Sn2O7 (A = Eu or Y). Ceram. Int., 2015, 41(2): 2266.

[36]

Yang JY, Su YC, Chen Z, Liu XY. Hydrothermal synthesis and characterization of nanocrystalline Gd2Sn2O7:Eu3+ phosphors. Adv. Mater. Res., 2011, 239-242, 2851.

[37]

Shi SK, He LY, Geng LN, Jiang LH, Wang SP, Zhang JJ, Zhou J. Solution combustion synthesis and enhanced luminescence of Eu3+-activated Y2Ce2O7 phosphor nanopowders. Ceram. Int., 2015, 41(9): 11960.

[38]

Kennedy BJ, Hunter BA, Howard CJ. Structural and bonding trends in tin pyrochlore oxides. J. Solid State Chem., 1997, 130(1): 58.

[39]

Yang JY, Su YC. Novel 3D octahedral Ln2Sn2O7:Eu3+ microcrystals: Hydrothermal synthesis and photoluminescence properties. Mater. Lett., 2010, 64(3): 313.

AI Summary AI Mindmap
PDF

105

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/