Electrorheological effect of Ti-bearing blast furnace slag with different TiC contents at 1500°C

Hong-rui Yue , Tao Jiang , Qiao-yi Zhang , Pei-ning Duan , Xiang-xin Xue

International Journal of Minerals, Metallurgy, and Materials ›› 2017, Vol. 24 ›› Issue (7) : 768 -775.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2017, Vol. 24 ›› Issue (7) : 768 -775. DOI: 10.1007/s12613-017-1460-z
Article

Electrorheological effect of Ti-bearing blast furnace slag with different TiC contents at 1500°C

Author information +
History +
PDF

Abstract

The electrorheological properties of CaO–SiO2–Al2O3–MgO–TiO2–TiC slags were investigated to enhance understanding of the effect of TiC addition on the viscosity, yield stress, and fluid pattern of Ti-bearing slags in a direct-current electric field. The viscosities and shear stresses of 4wt% and 8wt% TiC slags were found to increase substantially with increasing electric field intensity, whereas virtually no rheological changes were observed in the 0wt% TiC slag. The Herschel–Bulkley model was applied to demonstrate that the fluid pattern of the 4wt% TiC slag was converted from that of a Newtonian fluid to that of a Bingham fluid in response to the applied electric field; and the static yield stress increased linearly with the square of the electric field intensity.

Keywords

electrorheology / viscosity / Ti-bearing slag / titanium carbide

Cite this article

Download citation ▾
Hong-rui Yue, Tao Jiang, Qiao-yi Zhang, Pei-ning Duan, Xiang-xin Xue. Electrorheological effect of Ti-bearing blast furnace slag with different TiC contents at 1500°C. International Journal of Minerals, Metallurgy, and Materials, 2017, 24(7): 768-775 DOI:10.1007/s12613-017-1460-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Parthasarathy M, Klingenberg DJ. Electrorheology: mechanisms and models. Mater. Sci. Eng. R, 1996, 17(2): 57.

[2]

Hirose Y, Otsubo Y. Electrorheology of suspensions of poly(ethylene glycol)/poly(vinyl alcohol) blend particles. Colloids Surf. A, 2008, 317(1-3): 438.

[3]

Block H, Kelly JP. Electro-rheology. J. Phys. D, 1988, 21(12): 1661.

[4]

Hao T. Electrorheological fluids. Adv. Mater., 2001, 13(24): 1847.

[5]

Hao T. Electrorheological suspensions. Adv. Colloid Interface Sci., 2002, 97(1-3): 1.

[6]

Jordan TC, Shaw MT. Electrorheology. MRS Bull., 1991, 16(8): 38.

[7]

Jiang T, Liao DM, Zhou M, Zhang QY, Yue HR, Yang ST, Duan PN, Xue XX. Rheological behavior and constitutive equations of heterogeneous titanium-bearing molten slag. Int. J. Miner. Metall. Mater., 2015, 22(8): 804.

[8]

Qiu GB, Chen L, Zhu JY, Lv XW, Bai CG. Effect of Cr2O3 addition on viscosity and structure of Ti-bearing blast furnace slag. ISIJ Int., 2015, 55(7): 1367.

[9]

Zhang SF, Zhang X, Liu W, Lv XW, Bai CG, Wang L. Relationship between structure and viscosity of CaO-SiO2-Al2O3-MgO-TiO2 slag. J. Non-Cryst. Solids, 2014, 402, 214.

[10]

Ren S, Zhang JL, Wu LS, Liu WJ, Bai YN, Xing XD, Su BX, Kong DW. Influence of B2O3 on viscosity of high Ti-bearing blast furnace slag. ISIJ Int., 2012, 52(6): 984.

[11]

Liao JL, Li J, Wang XD, Zhang ZT. Influence of TiO2 and basicity on viscosity of Ti bearing slag. Ironmaking Steelmaking, 2012, 39(2): 133.

[12]

Jiang T, Yue HR, Xue XX, Duan PN, Zhang QY. An Equipment of Electrorheological Effect Testing of Titanium-bearing Slag. Chinese Patent, 2016

[13]

Coussot P, Tocquer L, Lanos C, Ovarlez G. Macroscopic vs. local rheology of yield stress fluids. J. Non-Newtonian Fluid Mech., 2009, 158(1-3): 85.

[14]

Oppong FK, Bruyn JRD. Mircorheology and jamming in a yield-stress fluid. Rheol. Acta, 2011, 50(4): 317.

[15]

Divoux T, Barentin C, Manneville S. Stress overshoot in a simple yield stress fluid: An extensive study combining rheology and velocimetry. Soft Matter, 2011, 7(19): 9335.

[16]

Tang HS, Kalyon DM. Estimation of the parameters of Herschel-Bulkley fluid under wall slip using a combination of capillary and squeeze flow viscometers. Rheol. Acta, 2004, 43(1): 80.

[17]

Roscoe R. The viscosity of suspensions of rigid spheres. Br. J. Appl. Phys., 1952, 3(8): 267.

[18]

Zhen YL, Zhang GH, Chou KC. Viscosity of CaO-MgO-Al2O3-SiO2-TiO2 melts containing TiC particles. Metall. Mater. Trans. B, 2015, 46(1): 155.

[19]

Yuan XY, Chen LF, Zhang LT. Influence of temperature on dielectric properties and microwave absorbing performances of TiC nanowires/SiO2 composites. Ceram. Int., 2014, 40(10): 15391.

[20]

Lengálová A, Pavlinek V, Sáha P, Stejskal J, Quadrat O. Electrorheology of polyaniline-coated inorganic particles in silicone oil. J. Colloid Interface Sci., 2003, 258(1): 174.

[21]

Gast AP, Zukoski CF. Electrorheological fluids as colloidal suspensions. Adv. Colloid Interface Sci., 1989, 30(89): 153.

[22]

Davis LC. Polarization forces and conductivity effects in electrorheological fluids. J. Appl. Phys., 1992, 72(4): 1334.

[23]

Anderson RA. Electrostatic forces in an ideal spherical-particle electrorheological fluid. Langmuir, 1994, 10(9): 2917.

[24]

Hao T, Kawai A, Ikazaki F. The yield stress equation for the electrorheological fluids. Langmuir, 2000, 16(7): 3058.

[25]

Weiss KD, Carlson JD, Coulter JP. Material aspects of electrorheological systems. J. Intell. Mater. Syst. Struct., 1993, 4(1): 13.

[26]

Zukoski CF. Material properties and the electrorheological response. Annu. Rev. Mater. Sci., 1993, 23(1): 45.

[27]

Klingenberg DJ, Charles IV. Studies on the steady-shear behavior of electrorheological suspensions. Langmuir, 1990, 6(1): 15.

[28]

Goodwin JW, Markham GM, Vincent B. Studies on model electrorheological fluids. J. Phys. Chem. B, 1997, 101(11): 1961.

[29]

Dhont JKG, Kang K. Electric-field-induced polarization of the layer of condensed ions on cylindrical colloids. Eur. Phys. J. E, 2011, 34(4): 1.

AI Summary AI Mindmap
PDF

102

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/