Effect of the CaO/SiO2 mass ratio and FeO content on the viscosity of CaO–SiO2–“FeO”–12wt%ZnO–3wt%Al2O3 slags

Jian-fang Lü , Zhe-nan Jin , Hong-ying Yang , Lin-lin Tong , Guo-bao Chen , Fa-xin Xiao

International Journal of Minerals, Metallurgy, and Materials ›› 2017, Vol. 24 ›› Issue (7) : 756 -767.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2017, Vol. 24 ›› Issue (7) : 756 -767. DOI: 10.1007/s12613-017-1459-5
Article

Effect of the CaO/SiO2 mass ratio and FeO content on the viscosity of CaO–SiO2–“FeO”–12wt%ZnO–3wt%Al2O3 slags

Author information +
History +
PDF

Abstract

An effective process for recycling lead from hazardous waste cathode ray tubes (CRTs) funnel glass through traditional lead smelting has been presented previously. The viscous behavior of the molten high lead slag, which is affected by the addition of funnel glass, plays a critical role in determining the production efficiency. Therefore, the viscosities of the CaO–SiO2–“FeO”–12wt%ZnO–3wt%Al2O3 slags were measured in the current study using the rotating spindle method. The slag viscosity decreases as the CaO/SiO2 mass ratio is increased from 0.8 to 1.2 and also as the FeO content is increased from 8wt% to 20wt%. The breaking temperature of the slag is lowered substantially by the addition of FeO, whereas the influence of the CaO/SiO2 mass ratio on the breaking temperature is complex. The structural analysis of quenched slags using Fourier transform infrared (FTIR) spectroscopy and Raman spectroscopy reveals that the silicate network structure is depolymerized with increasing CaO/SiO2 mass ratio or increasing FeO content. The [FeO6]-octahedra in the slag melt increase as the CaO/SiO2 mass ratio or the FeO content increases. This increase can further decrease the degree of polymerization (DOP) of the slag. Furthermore, the activation energy for viscous flow decreases both with increasing CaO/SiO2 mass ratio and increasing FeO content.

Keywords

lead smelting / slag viscosity / basicity / ferrous oxide / slag structure

Cite this article

Download citation ▾
Jian-fang Lü, Zhe-nan Jin, Hong-ying Yang, Lin-lin Tong, Guo-bao Chen, Fa-xin Xiao. Effect of the CaO/SiO2 mass ratio and FeO content on the viscosity of CaO–SiO2–“FeO”–12wt%ZnO–3wt%Al2O3 slags. International Journal of Minerals, Metallurgy, and Materials, 2017, 24(7): 756-767 DOI:10.1007/s12613-017-1459-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Méar F, Yot P, Cambon M, Ribes M. The characterization of waste cathode-ray tube glass. Waste Manage., 2006, 26(12): 1468.

[2]

Jang YC, Townsend TG. Leaching of lead from computer printed wire boards and cathode ray tubes by municipal solid waste landfill leachates. Environ. Sci. Technol., 2003, 37(20): 4778.

[3]

Xu QB, Li GM, He WZ, Huang JW, Shi X. Cathode ray tube (CRT) recycling: current capabilities in China and research progress. Waste Manage., 2012, 32(8): 1566.

[4]

Gregory JR, Nadeau MC, Kirchain RE. Evaluating the economic viability of a material recovery system: the case of cathode ray tube glass. Environ. Sci. Technol., 2009, 43(24): 9245.

[5]

Bernardo E, Cedro R, Florean M, Hreglich S. Reutilization and stabilization of wastes by the production of glass foams. Ceram. Int., 2007, 33(6): 963.

[6]

Matamoros-Veloza Z, Rendón-Angeles JC, Yanagisawa K, Cisneros-Guerrero MA, Cisneros-Guerrero MM, Aguirre L. Preparation of foamed glasses from CRT TV glass by means of hydrothermal hot-pressing technique. J. Eur. Ceram. Soc., 2008, 28(4): 739.

[7]

Méar F, Yot P, Viennois R, Ribes M. Mechanical behaviour and thermal and electrical properties of foam glass. Ceram. Int., 2007, 33(4): 543.

[8]

Andreola F, Barbieri L, Corradi A, Lancellotti I, Falcone R, Hreglich S. Glass-ceramics obtained by the recycling of end of life cathode ray tubes glasses. Waste Manage., 2005, 25(2): 183.

[9]

Bernardo E. Micro- and macro-cellular sintered glassceramics from wastes. J. Eur. Ceram. Soc., 2007, 27(6): 2415.

[10]

Ling TC, Poon CS. Utilization of recycled glass derived from cathode ray tube glass as fine aggregate in cement mortar. J. Hazard. Mater., 2011, 192(2): 451.

[11]

Ling TC, Poon CS. Effects of particle size of treated CRT funnel glass on properties of cement mortar. Mater. Struct., 2013, 46(1): 25.

[12]

Miyoshi H, Chen DP, Akai T. A novel process utilizing subcritical water to remove lead from wasted lead silicate glass. Chem. Lett., 2004, 33(8): 956.

[13]

Pruksathorn K, Damronglerd S. Lead recovery from waste frit glass residue of electronic plant by chemical-electrochemical methods. Korean J. Chem. Eng., 2005, 22(6): 873.

[14]

Saterlay AJ, Wilkins SJ, Compton RG. Towards greener disposal of waste cathode ray tubes via ultrasonically enhanced lead leaching. Green Chem., 2001, 3(4): 149.

[15]

Yuan WY, Li JH, Zhang QW, Saito F. Innovated application of mechanical activation to separate lead from scrap cathode ray tube funnel glass. Environ. Sci. Technol., 2012, 46(7): 4109.

[16]

Sasai R, Kubo H, Kamiya M, Itoh H. Development of an eco-friendly material recycling process for spent lead glass using a mechanochemical process and Na2EDTA reagent. Environ. Sci. Technol., 2008, 42(11): 4159.

[17]

Chen MJ, Zhang FS, Zhu JX. Lead recovery and the feasibility of foam glass production from funnel glass of dismantled cathode ray tube through pyrovacuum process. J. Hazard. Mater., 2009, 161(2-3): 1109.

[18]

Lu XW, Shih KM, Liu CS, Wang F. Extraction of metallic lead from cathode ray tube (CRT) funnel glass by thermal reduction with metallic iron. Environ. Sci. Technol., 2013, 47(17): 9972.

[19]

Okada T, Yonezawa S. Energy-efficient modification of reduction-melting for lead recovery from cathode ray tube funnel glass. Waste Manage., 2013, 33(8): 1758.

[20]

Xing MF, Zhang FS. Nano-lead particle synthesis from waste cathode ray-tube funnel glass. J. Hazard. Mater., 2011, 194(5): 407.

[21]

Xing MF, Wang YP, Li J, Xu H. Lead recovery and glass microspheres synthesis from waste CRT funnel glasses through carbon thermal reduction enhanced acid leaching process. J. Hazard. Mater., 2016, 305, 51.

[22]

Lv JF, Yang HY, Jin ZN, Ma ZY, Song Y. Feasibility of lead extraction from waste Cathode-Ray-Tubes (CRT) funnel glass through a lead smelting process. Waste Manage., 2016, 57, 198.

[23]

Chen M, Raghunath S, Zhao BJ. Viscosity measurements of SiO2–“FeO”–MgO system in equilibrium with metallic Fe. Metall. Mater. Trans. B, 2014, 45(1): 58.

[24]

Kondratiev A, Jak E, Hayes PC. Predicting slag viscosities in metallurgical systems. JOM, 2002, 54(11): 41.

[25]

Shankar A, Görnerup M, Lahiri AK, Seetharaman S. Experimental investigation of the viscosities in CaO–SiO2–MgO–Al2O3 and CaO–SiO2–MgO–Al2O3–TiO2 slags. Metall. Mater. Trans. B, 2007, 38(6): 911.

[26]

Park HS, Park SS, Sohn I. The viscous behavior of FeOt–Al2O3–SiO2 copper smelting slags. Metall. Mater. Trans. B, 2011, 42(4): 692.

[27]

Chen M, Raghunath S, Zhao BJ. Viscosity of SiO2–“FeO”–Al2O3 system in equilibrium with metallic Fe. Metall. Mater. Trans. B, 2013, 44(4): 820.

[28]

Shahbazian F, Sichen D, Seetharaman S. The effect of addition of Al2O3 on the viscosity of CaO–“FeO”–SiO2–CaF2 slags. ISIJ Int., 2002, 42(2): 155.

[29]

Lee YS, Min DJ, Jung SM, Yi SH. Influence of basicity and FeO content on viscosity of blast furnace type slags containing FeO. ISIJ Int., 2004, 44(8): 1283.

[30]

Kim JR, Lee YS, Min DJ, Jung SM, Yi SH. Influence of MgO and Al2O3 contents on viscosity of blast furnace type slags containing FeO. ISIJ Int., 2004, 44(8): 1291.

[31]

Wang ZJ, Shu QF, Sridhar S, Zhang M, Guo M, Zhang ZT. Effect of P2O5 and FetO on the viscosity and slagstructure in steelmaking slags. Metall. Mater. Trans. B, 2015, 46(2): 758.

[32]

Jak E, Zhao B, Hayes PC. Experimental study of phase equilibria in the systems Fe–Zn–O and Fe–Zn–Si–O at metallic iron saturation. Metall. Mater. Trans. B, 2000, 31(6): 1195.

[33]

Shi HY, Chen LG, Malfliet A, Jones PT, Blanpain B, Guo MX. Study of phase relations of ZnO-containing fayalite slag under Fe saturation. Metall. Mater. Trans. B, 2016, 47(5): 2820.

[34]

Gao YM, Wang SB, Hong C, Ma XJ, Yang F. Effects of basicity and MgO content on the viscosity of the SiO2–CaO–MgO–9wt%Al2O3 slag system. Int. J. Miner. Metall. Mater., 2014, 21(4): 353.

[35]

Feng C, Chu MS, Tang J, Qin J, Li F, Liu ZG. Effects of MgO and TiO2 on the viscous behaviors and phase compositions of titanium-bearing slag. Int. J. Miner. Metall. Mater., 2016, 23(8): 868.

[36]

Kim WH, Sohn I, Min DJ. A study on the viscous behaviour with K2O additions in the CaO–SiO2–Al2O3–MgO–K2O quinary slag system. Steel Res. Int., 2010, 81(9): 735.

[37]

Schumacher KJ, White JF, Downey JP. Viscosities in the calcium-silicate slag system in the range of 1798 K to 1973 K (1525°C to 1700°C). Metall. Mater. Trans. B, 2015, 46(1): 119.

[38]

Wu LS, Gran J, Du S. The effect of calcium fluoride on slag viscosity. Metall. Mater. Trans. B, 2011, 42(5): 928.

[39]

Wang L, Cui YR, Yang J, Zhang C, Cai DX, Zhang JQ, Sasaki Y, Ostrovski O. Melting properties and viscosity of SiO2–CaO–Al2O3–B2O3 system. Steel Res. Int., 2015, 86(6): 670.

[40]

Park JH, Min DJ, Song HS. Amphoteric behavior of alumina in viscous flow and structure of CaO–SiO2(–MgO)–Al2O3 slags. Metall. Mater. Trans. B, 2004, 35(2): 269.

[41]

Kim H, Kim WH, Sohn I, Min DJ. The effect of MgO on the viscosity of the CaO–SiO2–20wt%Al2O3–MgO slag system. Steel Res. Int., 2010, 81(4): 261.

[42]

Kim H, Matsuura H, Tsukihashi F, Wang W, Min DJ, Sohn I. Effect of Al2O3 and CaO/SiO2 on the iscosity of calcium–silicate-based slags containing 10 mass pct MgO. Metall. Mater. Trans. B, 2012, 44(1): 5.

[43]

Wang ZJ, Sun YQ, Sridhar S, Zhang M, Guo M, Zhang ZT. Effect of Al2O3 on the viscosity and structure of CaO–SiO2–MgO–Al2O3–FetO slags. Metall. Mater. Trans. B, 2015, 46(2): 537.

[44]

Saito N, Hori N, Nakashima K, Mori K. Viscosity of blast furnace type slags. Metall. Mater. Trans. B, 2003, 34(5): 509.

[45]

Yu JP, Wang LJ, Wang YX, Liu YQ, Zhou GZ. Effect of Fe2+ and Fe3+ on the properties of melts containing FeOx. J. Iron Steel Res., 2014, 26(10): 1.

[46]

Park H, Park JY, Kim GH, Sohn I. Effect of TiO2 on the viscosity and slag structure in blast furnace type slags. Steel Res. Int., 2012, 83(2): 150.

[47]

Zheng K, Zhang ZT, Liu LL, Wang XD. Investigation of the viscosity and structural properties of CaO–SiO2–TiO2 slags. Metall. Mater. Trans. B, 2014, 45(4): 1389.

[48]

Mysen BO, Finger LW, Virgo D, Seifert FA. Curve-fitting of Raman spectra of silicate glasses. Am. Mineral., 1982, 67(7-8): 686.

[49]

Lucazeau G, Sergent N, Pagnier T, Shaula A, Kharton V, Marques FMB. Raman spectra of apatites: La10-xSi6-y(Al,Fe)yO26±δ. J. Raman Spectrosc., 2007, 38(1): 21.

[50]

de Faria DLA, Silva SV, de Oliveira MT. Raman microspectroscopy of some iron oxides and oxyhydroxides. J. Raman Spectrosc., 1997, 28(11): 873.

AI Summary AI Mindmap
PDF

110

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/