Solution chemistry of carbonate minerals and its effects on the flotation of hematite with sodium oleate

Dong Li , Wan-zhong Yin , Ji-wei Xue , Jin Yao , Ya-feng Fu , Qi Liu

International Journal of Minerals, Metallurgy, and Materials ›› 2017, Vol. 24 ›› Issue (7) : 736 -744.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2017, Vol. 24 ›› Issue (7) : 736 -744. DOI: 10.1007/s12613-017-1457-7
Article

Solution chemistry of carbonate minerals and its effects on the flotation of hematite with sodium oleate

Author information +
History +
PDF

Abstract

The effects of carbonate minerals (dolomite and siderite) on the flotation of hematite using sodium oleate as a collector were investigated through flotation tests, supplemented by dissolution measurements, solution chemistry calculations, zeta-potential measurements, Fourier transform infrared (FTIR) spectroscopic studies, and X-ray photoelectron spectroscopy (XPS) analyses. The results of flotation tests show that the presence of siderite or dolomite reduced the recovery of hematite and that the inhibiting effects of dolomite were stronger. Dissolution measurements, solution chemistry calculations, and flotation tests confirmed that both the cations (Ca2+ and Mg2+) and CO3 2− ions dissolved from dolomite depressed hematite flotation, whereas only the CO3 2− ions dissolved from siderite were responsible for hematite depression. The zeta-potential, FTIR spectroscopic, and XPS analyses indicated that Ca2+, Mg2+, and CO3 2− (HCO3 ) could adsorb onto the hematite surface, thereby hindering the adsorption of sodium oleate, which was the main reason for the inhibiting effects of carbonate minerals on hematite flotation.

Keywords

hematite / carbonate minerals / solution chemistry / sodium oleate / flotation

Cite this article

Download citation ▾
Dong Li, Wan-zhong Yin, Ji-wei Xue, Jin Yao, Ya-feng Fu, Qi Liu. Solution chemistry of carbonate minerals and its effects on the flotation of hematite with sodium oleate. International Journal of Minerals, Metallurgy, and Materials, 2017, 24(7): 736-744 DOI:10.1007/s12613-017-1457-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Araujo AC, Viana PRM, Peres AEC. Reagents in iron ores flotation. Miner. Eng., 2005, 18(2): 219.

[2]

Turrer HDG, Peres AEC. Investigation on alternative depressants for iron ore flotation. Miner. Eng., 2010, 23(11-13): 1066.

[3]

Cao Z, Zhang YH, Cao YD. Reverse flotation of quartz from magnetite ore with modified sodium oleate. Miner. Process. Extr. Metall. Rev., 2013, 34(5): 320.

[4]

Ma X, Marques M, Gontijo C. Comparative studies of reverse cationic/anionic flotation of Vale iron ore. Int. J. Miner. Process., 2011, 100(3-4): 179.

[5]

Vidyadhar A, Kumari N, Bhagat RP. Adsorption mechanism of mixed collector systems on hematite flotation. Miner. Eng., 2012, 26, 102.

[6]

Liu WG, Liu WB, Wang XY, Wei DZ, Wang BY. Utilization of novel surfactant N-dodecyl-isopropanolamine as collector for efficient separation of quartz from hematite. Sep. Purif. Technol., 2016, 162, 188.

[7]

Yin WZ, Han YX, Xie F. Two-step flotation recovery of iron concentrate from Donganshan carbonaceous iron ore. J. Cent. South Univ. Technol., 2010, 17(4): 750.

[8]

Li LX, Yin WZ, Wang YB, Tao SJ. Effect of siderite on flotation separation of martite and quartz. J. Northeast. Univ. Nat. Sci., 2012, 33(3): 431.

[9]

Luo XM, Yin WZ, Yao J, Sun CY, Cao Y, Ma YQ, Hou Y. Flotation separation of magnetic separation concentrate of refractory hematite containing carbonate with enhanced dispersion. Chin. J. Nonferrous Met., 2013, 23(1): 238.

[10]

Shao AL. Flotation separation of Donganshan carbonates- containing hematite ore. J. Cent. South Univ. Sci. Technol., 2013, 44(2): 465.

[11]

Luo XM, Wang YF, Wen SM, Ma MZ, Sun CY, Yin WZ, Ma YQ. Effect of carbonate minerals on quartz flotation behavior under conditions of reverse anionic flotation of iron ores. Int. J. Miner. Process., 2016, 152, 1.

[12]

Zhu JJ, Yin WZ, Hou Y, Wang NL, Yao J, Wang YL. Experimental study on dispersion flotation of Dong’anshan middling containing carbonate. China Min. Mag., 2015, 24(7): 72.

[13]

Yin WZ, Li D, Luo XM, Yao J, Sun QY. Effect and mechanism of siderite on reverse flotation of hematite. Int. J. Miner. Metall. Mater., 2016, 23(4): 373.

[14]

Hu YH, Chi R, Xu ZH. Solution chemistry study of salt-type mineral flotation systems: role of inorganic dispersants. Ind. Eng. Chem. Res., 2003, 42(8): 1641.

[15]

Chen GL, Tao D. Effect of solution chemistry on flotability of magnesite and dolomite. Int. J. Miner. Process., 2004, 74(1-4): 343.

[16]

Rahnemaie R, Hiemstra T, van Riemsdijk W H. Carbonate adsorption on goethite in competition with phosphate. J. Colloid Interface Sci., 2007, 315(2): 415.

[17]

Feng B, Luo XP. The solution chemistry of carbonate and implications for pyrite flotation. Miner. Eng., 2013, 53, 181.

[18]

Zhang W, Honaker RQ, Groppo JG. Flotation of monazite in the presence of calcite part I: Calcium ion effects on the adsorption of hydroxamic acid. Miner. Eng., 2016, 100, 40.

[19]

Trivedi P, Axe L, Dyer J. Adsorption of meal ions onto goethite: single-adsorbate and competitive systems. Colloids Surf. A, 2001, 191(1-2): 107.

[20]

Lefèvre G. In situ Fourier-transform infrared spectroscopy studies of inorganic ions adsorption on metal oxides and hydroxides. Adv. Colloid Interface Sci., 2004, 107(2-3): 109.

[21]

Pokrovsky OS, Schott J. Surface chemistry and dissolution kinetics of divalent metal carbonates. Environ. Sci. Technol., 2002, 36(3): 426.

[22]

Shi Q, Zhang GF, Feng QM, Deng H. Effect of solution chemistry on the flotation system of smithsonite and calcite. Int. J. Miner. Process., 2013, 119, 34.

[23]

Amankonah JO, Somasundaran P, Ananthapadmabhan KP. Effects of dissolved mineral species on the dissolution/precipitation characteristics of calcite and apatite. Colloids Surf., 1985, 15, 295.

[24]

Silva CAR, Liu XW, Millero FJ. Solubility of siderite (FeCO3) in NaCl solutions. J. Solution Chem., 2001, 31(2): 97.

[25]

Wang DZ, Hu YH. Solution Chemistry of Flotation, 1988, Changsha, Hunan Science and Technology Press.

[26]

Pattanaik M, Biswal SK, Bhaumik SK. A comparative physicochemical study of hematite with hydroxamic acid and sodium oleate. Sep. Sci. Technol., 2000, 35(6): 919.

[27]

Quast K. The use of zeta potential to investigate the interaction of oleate on hematite. Miner. Eng., 2016, 85, 130.

[28]

Carlson JJ, Kawatra SK. Effects of CO2 on the zeta potential of hematite. Int. J. Miner. Process., 2011, 98(1-2): 8.

[29]

Haselhuhn HJ, Swanson KP, Kawatra SK. The effect of CO2 sparging on the flocculation and filtration rate of concentrated hematite slurries. Int. J. Miner. Process., 2013, 112-113, 107.

[30]

Wang L, Sun W, Hu YH, Xu LH. Adsorption mechanism of mixed anionic/cationic collectors in muscovite- quartz flotation system. Miner. Eng., 2014, 64, 44.

[31]

Xu LH, Hu YH, Dong FQ, Gao ZY, Wu HQ, Wang Z. Anisotropic adsorption of oleate on diaspore and kaolinite crystals: Implications for their flotation separation. Appl. Surf. Sci., 2014, 321, 331.

[32]

Yang YH, Xu LH, Liu YC, Han YX. Flotation separation of ilmenite from titanaugite using mixed collectors. Sep. Sci. Technol., 2016, 51(11): 1840.

[33]

Kulkarni RD, Somasundaran P. Flotation chemistry of hematite/oleate system. Colloids Surf., 1980, 1(3-4): 387.

[34]

Rath SS, Sinha N, Sahoo H, Das B, Mishra BK. Molecular modeling studies of oleate adsorption on iron oxides. Appl. Surf. Sci., 2014, 295, 115.

[35]

Parker T, Shi FN, Evans C, Powell M. The effects of electrical comminution on the mineral liberation and surface chemistry of a porphyry copper ore. Miner. Eng., 2015, 82, 101.

[36]

Xie XZ, Wang YH, Jiang YQ, Huang P, Zhang Y. Flotation separation of limonite and calcite by using NaOL as collector and action mechanisms. J. Cent. South Univ. Sci. Technol., 2011, 42(12): 3605.

[37]

Luo XM, Yin WZ, Wang YF, Sun CY, Ma YQ, Liu J. Effect and mechanism of dolomite with different size fractions on hematite flotation using sodium oleate as collector. J. Cent. South Univ., 2016, 23(3): 529.

[38]

Bargar JR, Kubicki JD, Reitmeyer R, Davis JA. ATR-FTIR spectroscopic characterization of coexisting carbonate surface complexes on hematite. Geochim. Cosmochim. Acta, 2005, 69(6): 1527.

AI Summary AI Mindmap
PDF

99

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/