Alternative beneficiation of tantalite and removal of radioactive oxides from Ethiopian Kenticha pegmatite–spodumene ores

Berhe Goitom Gebreyohannes , Velázquez del Rosario Alberto , Abubeker Yimam , Girma Woldetinsae , Bogale Tadesse

International Journal of Minerals, Metallurgy, and Materials ›› 2017, Vol. 24 ›› Issue (7) : 727 -735.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2017, Vol. 24 ›› Issue (7) : 727 -735. DOI: 10.1007/s12613-017-1456-8
Article

Alternative beneficiation of tantalite and removal of radioactive oxides from Ethiopian Kenticha pegmatite–spodumene ores

Author information +
History +
PDF

Abstract

The beneficiation methods for Ethiopian Kenticha pegmatite–spodumene ores were assessed through mineralogical and quantitative analyses with X-ray diffraction (XRD) and energy-dispersive X-ray fluorescence (EDXRF). The tantalite in the upper zone of the Kenticha pegmatite–spodumene deposit is 58.7wt% higher than that in the inner zone. XRD analysis revealed that the upper zone is dominated by manganocolumbite, whereas the inner zone is predominantly tantalite−Mn. Repeated cleaning and beneficiation of the upper-zone ore resulted in concentrate compositions of 57.34wt% of Ta2O5 and 5.41wt% of Nb2O5. Washing the tantalite concentrates using 1vol% KOH and 1 M H2SO4 led to the removal of thorium and uranium radioactive oxides from the concentrate. The findings of this study suggest that the beneficiation and alkaline washing of Kenticha pegmatite–spodumene ores produce a high-grade export-quality tantalite concentrate with negligible radioactive oxides.

Keywords

beneficiation / manganocolumbite / pegmatite-spodumene / radioactive oxides / tantalite

Cite this article

Download citation ▾
Berhe Goitom Gebreyohannes, Velázquez del Rosario Alberto, Abubeker Yimam, Girma Woldetinsae, Bogale Tadesse. Alternative beneficiation of tantalite and removal of radioactive oxides from Ethiopian Kenticha pegmatite–spodumene ores. International Journal of Minerals, Metallurgy, and Materials, 2017, 24(7): 727-735 DOI:10.1007/s12613-017-1456-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Baba AA, Adekola FA, Dele-Ige OI, Bale RB. Investigation of dissolution kinetics of a Nigerian tantalite ore in nitric acid. J. Miner. Mater. Charact. Eng., 2007, 7(1): 83.

[2]

Bernstein S, Frei D, McLimans RK, Knudsen C, Vasudev VN. Application of CCSEM to heavy mineral deposits, Source of high-Ti ilmenite sand deposits of South Kerala beaches, SW India. J. Geochem. Explor., 2008, 96(1): 25.

[3]

Melcher F, Graupner T, Gäbler HE, Sitnikova M, Henjes-Kunst F, Oberthür T, Gerdes A, Dewaele S. Tantalum–(niobium–tin) mineralisation in African pegmatites and rare metal granites: Constraints from Ta–Nb oxide mineralogy, geochemistry and U–Pb geochronology. Ore Geol. Rev., 2015, 64, 667.

[4]

Amuda MOH, Esezobor DE, Lawal GI. Adaptable technologies for life-cycle processing of tantalum bearing minerals. J. Miner. Mater. Charact. Eng., 2007, 6(1): 69.

[5]

Htwe HH, Lwin KT. Study on extraction of niobium oxide from columbite–tantalite concentrate. Int. J. Chem. Mol. Nucl. Mater. Metall. Eng., 2008, 2(10): 223.

[6]

Badanina EV, Sitnikova MA, Gordienko VV, Melcher F, Gäbler H-E, Lodziak J, Syritso LF. Mineral chemistry of columbite–tantalite from spodumene pegmatites of Kolmozero, Kola Peninsula (Russia). Ore Geol. Rev., 2015, 64, 720.

[7]

Van Lichtervelde M. Rare-element pegmatites - from natural systems to the experimental lab. Mitt. Österr. Miner. Ges., 2014, 160, 13.

[8]

Beurlen H, Müller A, Silva D, Da Silva MRR. Petrogenetic significance of LA-ICP-MS trace-element data on quartz from the Borborema Pegmatite Province, northeast Brazil. Mineral. Mag., 2011, 75(5): 2703.

[9]

Mitchell RH. Primary and secondary niobium mineral deposits associated with carbonatites. Ore Geol. Rev., 2015, 64, 626.

[10]

Melcher F, Sitnikova MA, Graupner T, Martin N, Oberthür T, Henjes-Kunst F, Gäbler E, Gerdes A, Brätz H, Davis DW, Dewaele S. Fingerprinting of conflict minerals: columbite–tantalite (“coltan”) ores. SGA News, 2008, 23, 7.

[11]

Nikolaev AL, Kirichenko NV, Maiorov VG. Niobium, tantalum, and titanium fluoride solutions. Russ. J. Inorg. Chem., 2009, 54(4): 505.

[12]

Adetunji AR, Siyanbola WO, Funtua II, Olusunle SOO, Afonja AA, Adewoye OO. Assessment of beneficiation routes of tantalite ores from key locations in Nigeria. J. Miner. Mater. Charact. Eng., 2005, 4(2): 85.

[13]

Küster D, Romer RL, Tolessa D, Zerihun D, Bheemalingeswara K, Melcher F, Oberthür T. The Kenticha rare-element pegamtite, Ethiopia: internal differntiation, U–Pb age and Ta mineralization. Miner. Deposita, 2009, 44, 723.

[14]

Kim EJ, Kim SY, Moon DH, Koh SM. Fractionation and rare-element mineralization of kenticha pegmatite, Southern Ethiopia. Econ. Environ. Geol., 2013, 46(5): 375.

[15]

Cerný P, Ercit TS. The classification of granitic pegmatites revisited. Can. Mineral., 2005, 43(6): 2005.

[16]

Mohammedyasin MS. Geology, geochemistry and geochronology of the Kenticha rare metal granite pegmatite, Adola Belt, southern Ethiopia: a review. Int. J. Geosci., 2017, 8, 46.

[17]

Tadesse S, Zerihun D. Composition, fractionation trend and zoning accretion of the columbite–tantalite group of minerals in the Kenticha rare-metal field (Adola, southern Ethiopia). J. Afr. Earth Sci., 1996, 23(3): 411.

[18]

Burt R. Beneficiation of tantalum ore — how it is achieved and could it be better. Proceedings of the 125th TMS Annual Meeting and Exhibition, 1996 17.

[19]

Nete M, Purcell W, Nel JT. Separation and isolation of tantalum and niobium from tantalite using solvent extraction and ion exchange. Hydrometallurgy, 2014, 149, 31.

[20]

Theron TA. Quantification of Tantalum in Series of Tantalum-Containing Compounds, 2010, Bloemfontein, University of the Free State 88.

[21]

El-Hussaini OM, Mahdy MA. Sulfuric acid leaching of Kab Amiri niobium–tantalum bearing minerals, Central Eastern Desert, Egypt. Hydrometallurgy, 2001, 64(3): 219.

[22]

Wang XH, Zhang SL, Xu HB, Zhang Y. Dissolution behaviors of Ta2O5, Nb2O5 and their mixture in KOH and H2O system. Trans. Nonferrous Met. Soc. China, 2010, 20(10): 2006.

[23]

EL-Husaini OM, EL-Hazek MN. Removal of radioactive elements from niobium and tantalum ores. Eur. J. Miner. Process. Environ. Prot., 2005, 5(1): 7.

[24]

Nete M, Koko F, Theron T, Purcell W, Nel JT. Primary beneficiation of tantalite using magnetic separation and acid leaching. Int. J. Miner. Metall. Mater., 2014, 21(12): 1153.

[25]

El-Hussaini OM, Mahdy MA. Extraction of niobium and tantalum from nitrate and sulfate media by using MIBK. Miner. Process. Extr. Metall. Rev., 2010, 22, 633.

[26]

Stratton P, Henderson D. Tantalum Market Overview, 2013

[27]

Mackay DAR, Simandl GJ. Niobium and tantalum: Geology, markets, and supply chains. Symposium on Critical and Strategic Materials, 2015 13.

[28]

Geological Survey of Ethiopia. Tantalum—Key Mineral for Gadgets and Electronic Equipment, Mineral Resource of Ethiopia, 2010, 1, 1.

[29]

Kabangu MJ, Crouse PL. Separation of niobium and tantalum from Mozambican tantalite by ammonium bifluoride digestion and octanol solvent extraction. Hydrometallurgy, 2012, 129-130, 151.

[30]

Nete M, Purcell W, Snyders E, Nel JT, Beukes G. Characterization and alternative dissolution of tantalite mineral samples from Mozambique. J. South Afr. Inst. Min. Metall., 2011, 112(12): 1079.

[31]

Wang XH, Zheng SL, Xu HB, Zhang Y. Leaching of niobium and tantalum from a low-grade ore using a KOH roast–water leach system. Hydrometallurgy, 2009, 98(3-4): 219.

[32]

Zhou HM, Zheng SL, Zhang Y, Yi DQ. A kinetic study of the leaching of a low-grade niobium–tantalum ore by concentrated KOH solution. Hydrometallurgy, 2005, 80(3): 170.

[33]

Mackay DAR, Simandl GJ. Geology, market and supply chain of niobium and tantalum—a review. Miner. Deposita, 2014, 49, 1025.

AI Summary AI Mindmap
PDF

112

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/