Glass-forming ability, microhardness, corrosion resistance, and dealloying treatment of Mg60−xCu40Nd x alloy ribbons

Hao-yi Chi , Zhen-gui Yuan , Yan Wang , Min Zuo , De-gang Zhao , Hao-ran Geng

International Journal of Minerals, Metallurgy, and Materials ›› 2017, Vol. 24 ›› Issue (6) : 708 -717.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2017, Vol. 24 ›› Issue (6) : 708 -717. DOI: 10.1007/s12613-017-1454-x
Article

Glass-forming ability, microhardness, corrosion resistance, and dealloying treatment of Mg60−xCu40Nd x alloy ribbons

Author information +
History +
PDF

Abstract

The influence of Nd addition on the glass-forming ability (GFA), microhardness, and corrosion resistance of Mg60−xCu40Nd x (x = 5, 10, 15, 20, and 25, at%) alloys were investigated by differential scanning calorimetry, Vickers-type hardness tests, and electrochemical methods. The results suggest that the GFA and microhardness of the amorphous alloys increase until the Nd content reaches 20at%. The corrosion potential and corrosion current density obtained from the Tafel curves indicate that the Mg35Cu40Nd25 ternary alloy exhibits the best corrosion resistance among the investigated alloys. Notably, nanoporous copper (NPC) was synthesized through a single-step dealloying of Mg60−xCu40Nd x (x = 5, 10, 15, 20, and 25) ternary alloys in 0.04 mol·L−1 H2SO4 solution under free corrosion conditions. The influence of dealloying process parameters, such as dealloying time and temperature, on the microstructure of the ribbons was also studied using the surface diffusivity theory. The formation mechanism of dealloyed samples with a multilayered structure was also discussed.

Keywords

amorphous alloys / glass-forming ability / microhardness / corrosion resistance / dealloying

Cite this article

Download citation ▾
Hao-yi Chi, Zhen-gui Yuan, Yan Wang, Min Zuo, De-gang Zhao, Hao-ran Geng. Glass-forming ability, microhardness, corrosion resistance, and dealloying treatment of Mg60−xCu40Nd x alloy ribbons. International Journal of Minerals, Metallurgy, and Materials, 2017, 24(6): 708-717 DOI:10.1007/s12613-017-1454-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Botta W.J., Berger J.E., Kiminami C.S., Roche V., Nogueira R.P., Bolfarini C. Corrosion resistance of Fe-based amorphous alloys. J. Alloys Compd., 2014, 586(1): S105.

[2]

Inoue A. Stabilization of metallic supercooled liquid and bulk amorphous alloys. Acta Mater., 2000, 48(1): 279.

[3]

Jayalakshmi S., Sahu S., Sankaranarayanan S., Gupta S., Gupta M. Development of novel Mg–Ni60Nb40 amorphous particle reinforced composites with enhanced hardness and compressive response. Mater. Des., 2014, 53, 849.

[4]

Wang J.F., Huang S., Wei Y.Y., Guo S.F., Pan F.S. Enhanced mechanical properties and corrosion resistance of a Mg–Zn–Ca bulk metallic glass composite by Fe particle addition. Mater. Lett., 2013, 91, 311.

[5]

Muthiah T., Aguilar C., Guzman D., Kumaran S. Synthesis and characterization of mechanical alloyed Mg-Ni-Ca and Mg-Cu-Ca amorphous alloys. Procedia Mater. Sci., 2015, 9, 428.

[6]

Lu Z.P., Liu C.T. A new glass-forming ability criterion for bulk metallic glasses. Acta Mater., 2002, 50(13): 3501.

[7]

Kim S.G., Inoue A., Masumoto T. High mechanical strengths of Mg-Ni-Y and Mg-Cu-Y amorphous alloys with significant supercooled liquid region. Mater. Trans. JIM, 1990, 31(11): 929.

[8]

Sun Y.D., Chen Q.R., Li G.Z. Enhanced glass forming ability and plasticity of Mg-based bulk metallic glass by minor addition of Cd. J. Alloys Compd., 2014, 584, 273.

[9]

Laws K.J., Granata D., Löffler J.F. Alloy design strategies for sustained ductility in Mg-based amorphous alloys–Tackling structural relaxation. Acta Mater., 2016, 103, 735.

[10]

Ge X.B., Chen L.Y., Zhang L., Wen Y.R., Hirata A., Chen M.W. Nanoporous metal enhanced catalytic activities of amorphous molybdenum sulfide for high-efficiency hydrogen production. Adv. Mater., 2014, 26(19): 3100.

[11]

Yang Y., Ruan G.D., Xiang C.S., Wang G., Tour J.M. Flexible three-dimensional nanoporous metal-based energy devices. J. Am. Chem. Soc., 2014, 136(17): 6187.

[12]

Ryder M.R., Tan J.C. Nanoporous metal organic framework materials for smart applications. Mater. Sci. Technol., 2014, 30(13): 1598.

[13]

J. Nanomater., 2015, 16(1)

[14]

Wang Z., Liu J.Y., Qin C.L., Yu H., Xia X.C., Wang C.Y., Zhang Y.S., Hu Q.F., Zhao W.M. Dealloying of Cu-based metallic glasses in acidic solutions: products and energy storage applications. Nanomaterials, 2015, 5(2): 697.

[15]

Ding Y., Kim Y.J., Erlebacher J. Nanoporous gold leaf: “ancient technology”/advanced material. Adv. Mater., 2004, 16(21): 1897.

[16]

Fujita T., Tokunaga T., Zhang L., Li D., Chen L., Arai S., Yamamoto Y., Hirata A., Tanaka N., Ding Y., Chen M. Atomic observation of catalysis-induced nanopore coarsening of nanoporous gold. Nano Lett., 2014, 14(3): 1172.

[17]

Kim S.H., Choi J.B., Nguyen Q.N., Lee J.M., Park S., Chung T.D., Byun J.Y. Nanoporous platinum thin films synthesized by electrochemical dealloying for nonenzymatic glucose detection. Phys. Chem. Chem. Phys., 2013, 15(16): 5782.

[18]

Erlebacher J., Aziz M.J., Karma A., Dimitrov N., Sieradzki K. Evolution of nanoporosity in dealloying. Nature, 2001, 410(6827): 450.

[19]

Luo X.K., Li R., Huang L., Zhang T. Nucleation and growth of nanoporous copper ligaments during electrochemical dealloying of Mg-based metallic glasses. Corros. Sci., 2013, 67(1): 100.

[20]

Hrubý A. Evaluation of glass-forming tendency by means of DTA. Czech. J. Phys., 1972, 22(11): 1187.

[21]

Turnbull D. Under what conditions can a glass be formed. Contemp. Phys., 1969, 10(5): 473.

[22]

Inoue A. High strength bulk amorphous alloys with low critical cooling rates. Mater. Trans. JIM, 1995, 36(7): 866.

[23]

Chen H.S., Turnbull D. Formation, stability and structure of palladium-silicon based alloy glasses. Acta Metall., 1969, 17(8): 1021.

[24]

Phys. Rev. Lett., 2003, 91(11)

[25]

J. Appl. Phys., 2007, 101(8)

[26]

Inoue A., Hashimoto K. Amorphous and Nanocrystalline Materials: Preparation, Properties, and Applications, 2013

[27]

Liu X.Y., Xiang Z., Niu J.C., Xia K.D., Yang Y., Yan B., Lu W. The corrosion behaviors of amorphous, nanocrystalline and crystalline Ni-W alloys coating. Int. J. Electrochem. Sci., 2015, 10(11): 9042.

[28]

Souza C.A.C., Kuri S.E., Politti F.S., May J.E., Kiminami C.S. Corrosion resistance of amorphous and polycrystalline FeCuNbSiB alloys in sulphuric acid solution. J. Non Cryst. Solids, 1999, 247(1-3): 69.

[29]

Li X., Lv F., Geng Y.X., Qi F., Xu Y.J., Liu F., Wang Y.X. Preparation and corrosion property of (Cu50Zr50)(100-x)Ndx amorphous alloy. Int. J. Electrochem. Sci., 2017, 12, 726.

[30]

Jiang W.H., Liu F.X., Wang Y.D., Zhang H.F., Choo H., Liaw P.K. Comparison of mechanical behavior between bulk and ribbon Cu-based metallic glasses. Mater. Sci. Eng. A, 2006, 430(1-2): 350.

[31]

Seebauer E.G., Allen C.E. Estimating surface diffusion coefficients. Prog. Surf. Sci., 1995, 49(3): 265.

[32]

Dona J.M., Gonzalez-Velasco J. Mechanism of surface diffusion of gold adatoms in contact with an electrolytic solution. J. Phys. Chem., 1993, 97(18): 4714.

[33]

J. Electrochem. Soc., 2014, 161(1)

[34]

Dan Z.H., Qin F.X., Sugawara Y., Muto I., Hara N. Dependency of the formation of Au-stabilized nanoporous copper on the dealloying temperature. Microporous Mesoporous Mater., 2014, 186, 181.

[35]

Erlebacher J. An atomistic description of dealloying: porosity evolution, the critical potential, and rate-limiting behavior. J. Electrochem. Soc., 2004, 151(10): C614.

[36]

Vanýsek P. Electrochemical Series in Handbook of Chemistry and Physics, 2011

[37]

Fuhr J.R., Wiese W.L. CRC Handbook of Chemistry and Physics, 2005

[38]

Bard A.J., Parsons R., Jordan J. Standard Potentials in Aqueous Solution, International Union of Pure and Applied Chemistry, 1985

AI Summary AI Mindmap
PDF

92

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/