Studies on thermally grown oxide as an interface between plasma-sprayed coatings and a nickel-based superalloy substrate

Adam Khan Mahaboob Basha , Sundarrajan Srinivasan , Natarajan Srinivasan

International Journal of Minerals, Metallurgy, and Materials ›› 2017, Vol. 24 ›› Issue (6) : 681 -690.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2017, Vol. 24 ›› Issue (6) : 681 -690. DOI: 10.1007/s12613-017-1451-0
Article

Studies on thermally grown oxide as an interface between plasma-sprayed coatings and a nickel-based superalloy substrate

Author information +
History +
PDF

Abstract

A thermally grown oxide layer formed by hot corrosion was investigated as an interface between plasma-sprayed coatings and a nickel-based superalloy substrate. The hot corrosion mechanism of NiCr–Cr2O3 and Al2O3–40wt% TiO2 (A40T) plasma coated Inconel 617 was evaluated. The experiments were carried out at 1000°C using a combination of Na2SO4, NaCl, and V2O5 salts to simulate the conditions of a gas turbine in a marine environment. The hot corrosion results revealed the spallation and dissolution of oxides upon prolonged exposure. Optical images and scanning electron micrographs of the exposed samples revealed the formation of oxide scale and provided details of its morphology in NiCr–Cr2O3 coated samples. Microstructure characterization of A40T coatings demonstrated a thermally grown oxide (TGO) layer at 1000°C. Increasing the thickness of the TGO layer decreased the corrosion resistance. The elemental analysis and image mapping revealed the migration of active elements from the substrate and coatings toward the corrosive environment.

Keywords

corrosion / coatings / superalloy / oxides

Cite this article

Download citation ▾
Adam Khan Mahaboob Basha, Sundarrajan Srinivasan, Natarajan Srinivasan. Studies on thermally grown oxide as an interface between plasma-sprayed coatings and a nickel-based superalloy substrate. International Journal of Minerals, Metallurgy, and Materials, 2017, 24(6): 681-690 DOI:10.1007/s12613-017-1451-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Kamal S., Jayaganthan R., Prakash S. Hot corrosion studies of detonation-gun-sprayed nicraly + 0.4wt% CeO2 coated superalloys in molten salt environment. J. Mater. Eng. Perform., 2011, 20(6): 1068.

[2]

Che C., Wu G.Q., Qi H.Y., Huang Z., Yang X.G. Effect of bond coat surface roughness on oxidation behaviour of air plasma sprayed thermal barrier coatings. Surf. Eng., 2008, 24(4): 276.

[3]

Wang Y., Li M.X., Suo H.L. Mechanical properties of YSZ thermal barrier coatings with segmented structure. Surf. Eng., 2012, 28(5): 329.

[4]

Ren X., Wang F.H., Wang X. High-temperature oxidation and hot corrosion behaviors of the NiCr–CrAl coating on a nickel-based superalloy. Surf. Coat. Technol., 2005, 198(1-3): 425.

[5]

Mahesh R.A., Jayaganthan R., Prakash S. High temperature oxidation studies on HVOF sprayed NiCrAl coatings on superalloys. Surf. Eng., 2011, 27(5): 332.

[6]

Mahesh R.A., Jayaganthan R., Prakash S. Evaluation of hot corrosion behaviour of HVOF sprayed Ni–5Al and Ni-CrAl coatings in coal fired boiler environment. Surf. Eng., 2010, 26(6): 413.

[7]

Xie X.Y., Guo H.B., Gong S.K., Xu H.B. Hot corrosion behavior of double-ceramic-layer LaTi2Al9O19/YSZ thermal barrier coatings. Chin. J. Aeronaut., 2012, 25(1): 137.

[8]

Kaushal G., Kaur N., Singh H., Prakash S. Effect of zirconium addition in HVOF sprayed Ni–20Cr coating. Surf. Eng., 2013, 29(1): 46.

[9]

Matthews S., James B., Hyland M. High temperature erosion–oxidation of Cr3C2–NiCr thermal spray coatings under simulated turbine conditions. Corros. Sci., 2013, 70, 203.

[10]

Balint D.S., Hutchinson J.W. An analytical model of rumpling in thermal barrier coatings. J. Mech. Phys. Solids, 2005, 53(4): 949.

[11]

Chen M.W., Ott R.T., Hufnagel T.C., Wright P.K., Hemker K.J. Microstructural evolution of platinum modified nickel aluminide bond coat during thermal cycling. Surf. Coat. Technol., 2003, 163-164(29): 25.

[12]

Zhao H.B., Yu Z., Wadley H.N.G. The influence of coating compliance on the delamination of thermal barrier coatings. Surf. Coat. Technol., 2010, 204(15): 2432.

[13]

McPherson R. A review of microstructure and properties of plasma sprayed ceramic coatings. Surf. Coat. Technol., 1989, 39-40, 173.

[14]

Mahmood I.A., Jameel W.W., Khaleel L.A. Improved oxidation resistance for thermal barrier ceramic coating protect. Int. J. Res. Eng. Technol., 2013, 1(5): 77.

[15]

Rico A., Rodríguez J., Otero E. High temperature oxidation behaviour of nanostructured alumina–titania APS coatings. Oxid. Met., 2010, 73(5): 531.

[16]

Zhu L.J., Zhu S.L., Wang F.H. Hot corrosion behaviour of a Ni + CrAlYSiN composite coating in Na2SO4–25 wt% NaCl melt. Appl. Surf. Sci., 2013, 268(1): 103.

[17]

M. Daroonparvar, M.A.M. Yajid, N.M. Yusof, and M.S. Hussain, Improved thermally grown oxide scale in air plasma sprayed NiCrAlY/Nano-YSZ coatings, J. Nanomater., 2013(2013), art. No. 520104.

[18]

Ni L.Y., Liu C., Huang H., Zhou C.G. Thermal cycling behaviour of thermal barrier coatings with HVOF NiCrAlY bond coat. J. Therm. Spray Technol., 2011, 20(5): 1133.

[19]

Xu H.B., Guo H.B., Liu F.S., Gong S.K. Development of gradient thermal barrier coatings and their hot-fatigue behavior. Surf. Coat. Technol., 2000, 130(1): 133.

[20]

Tolpygo V.K., Clarke D.R. Surface rumpling of a (Ni,Pt)Al bond coat induced by cyclic oxidation. Acta Mater., 2000, 48(13): 3283.

[21]

Tang Z.L., Wang F.H., Wu W.T. Effect of Al2O3 and enamel coatings on 900°C oxidation and hot corrosion behaviors of gamma-TiAl. Mater. Sci. Eng. A, 2000, 276(1-2): 70.

[22]

Gurrappa I., Rao A.S. Thermal barrier coatings for enhanced efficiency of gas turbine engines. Surf. Coat. Technol., 2006, 201(6): 3016.

[23]

Gurrappa I., Yashwanth I.V.S., Gogia A.K. The behaviour of superalloys in marine gas turbine engine conditions. J. Surf. Eng. Mater. Adv. Technol., 2011, 1(3): 144.

[24]

Blachere J.R., Pettit F.S. High Temperature Corrosion of Ceramics, 1989 89.

[25]

Huang X., Puetz P., Yang Q., Tang Z. Characterisation of transient oxide formation on NiCrAlY after heat treatment in vacuum. Surf. Eng., 2011, 27(5): 368.

[26]

Rahman A., Jayaganthan R., Prakash S., Chawla V., Chandra R. Cyclic high temperature oxidation behaviour of sputtered Cr/Al multilayer coatings on superalloy. Surf. Eng., 2011, 27(5): 393.

[27]

Kamal S., Jayaganthan R., Prakash S. Hot corrosion behaviour of D-gun sprayed NiCoCrAlYTa coated superalloys at 900°C in molten salt environment. Surf. Eng., 2010, 26(6): 453.

[28]

Davis J.R. Nickel, Cobalt, and Their Alloys, ASM International, Materials Park. Ohio, 2000 14.

[29]

Graham H.C., Davis H.H. Oxidation/vaporization kinetics of Cr2O3. J. Am. Ceram. Soc., 1971, 54(2): 89.

[30]

Guo M.H., Wang Q.M., Ke P.L., Gong J., Sun C., Huang R.F., Wen L.S. The preparation and hot corrosion resistance of gradient NiCoCrAlYSiB coatings. Surf. Coat. Technol., 2006, 200(12-13): 3942.

[31]

Qiao M., Zhou C.G. Hot corrosion behavior of Co modified NiAl coating on nickel base superalloys. Corros. Sci., 2012, 63, 239.

[32]

Zhao X.S., Zhou C.G. Effect of Y2O3 content in the pack on microstructure and hot corrosion resistance of Y–Co-modified aluminide coating. Corros. Sci., 2014, 86, 223.

[33]

He H.Y., Liu Z.J., Wang W., Zhou C.G. Microstructure and hot corrosion behavior of Co–Si modified aluminide coating on nickel based superalloys. Corros. Sci., 2015, 100, 466.

[34]

Pei Y.W., Zhou C.G. Improved hot corrosion resistance of Dy–Co-modified aluminide coating by pack cementation process on nickel base superalloys. Corros. Sci., 2016, 112, 710.

[35]

McKee D.W., Shore D.A., Lurthra K.L. The effect of SO2 and NaCl on high temperature hot corrosion. J. Electrochem. Soc., 1978, 125(3): 411.

[36]

Hossain M.K., Saunders S.R.J. A microstructural study of the influence of NaCl vapor on the oxidation of a Ni–Cr–Al alloy at 850°C. Oxid. Met., 1978, 12(1): 1.

[37]

Klinkova L.A., Ukshe E.A. Solution of corundum in fused vanadates. Russ. J. Inorg. Chem., 1975, 20(2): 799.

[38]

Sidky P.S., Hocking M.G. The hot corrosion of Ni-based ternary alloys and superalloys for application in gas turbines employing residual fuels. Corros. Sci., 1987, 27(5): 499.

AI Summary AI Mindmap
PDF

120

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/