Effect of cryogenic rolling and annealing on the microstructure evolution and mechanical properties of 304 stainless steel

Jin-tao Shi , Long-gang Hou , Jin-rong Zuo , Lin-zhong Zhuang , Ji-shan Zhang

International Journal of Minerals, Metallurgy, and Materials ›› 2017, Vol. 24 ›› Issue (6) : 638 -645.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2017, Vol. 24 ›› Issue (6) : 638 -645. DOI: 10.1007/s12613-017-1446-x
Article

Effect of cryogenic rolling and annealing on the microstructure evolution and mechanical properties of 304 stainless steel

Author information +
History +
PDF

Abstract

Metastable 304 austenitic stainless steel was subjected to rolling at cryogenic and room temperatures, followed by annealing at different temperatures from 500 to 950°C. Phase transition during annealing was studied using X-ray diffractometry. Transmission electron microscopy and electron backscattered diffraction were used to characterize the martensite transformation and the distribution of austenite grain size after annealing. The recrystallization mechanism during cryogenic rolling was a reversal of martensite into austenite and austenite growth. Cryogenic rolling followed by annealing refined grains to 4.7 μm compared with 8.7 μm achieved under room-temperature rolling, as shown by the electron backscattered diffraction images. Tensile tests showed significantly improved mechanical properties after cryogenic rolling as the yield strength was enhanced by 47% compared with room-temperature rolling.

Keywords

stainless steel / cryogenic rolling / annealing / microstructural evolution / mechanical properties / recrystallization

Cite this article

Download citation ▾
Jin-tao Shi, Long-gang Hou, Jin-rong Zuo, Lin-zhong Zhuang, Ji-shan Zhang. Effect of cryogenic rolling and annealing on the microstructure evolution and mechanical properties of 304 stainless steel. International Journal of Minerals, Metallurgy, and Materials, 2017, 24(6): 638-645 DOI:10.1007/s12613-017-1446-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Herrera C., Plaut R.L., Padilha A.F. Microstructural refinement during annealing of plastically deformed austenitic stainless steels. Mater. Sci. Forum, 2007, 550, 423.

[2]

Kumar B.R., Das S.K., Mahato B., Ghosh R.N. Role of strain-induced martensite on microstructural evolution during annealing of metastable austenitic stainless steel. J. Mater. Sci., 2010, 45(4): 911.

[3]

Padilha A.F., Plaut R.L., Rios P.R. Annealing of cold-worked austenitic stainless steels. ISIJ Int., 2003, 43(2): 135.

[4]

Misra R.D.K., Zhang Z., Venkatasurya P.K.C., Somani M.C., Karjalainen L.P. The effect of nitrogen on the formation of phase reversion-induced nanograined/ultrafine-grained structure and mechanical behavior of a Cr–Ni–N steel. Mater. Sci. Eng. A, 2011, 528(3): 1889.

[5]

Valiev R.Z., Krasilnikov N.A., Tsenev N.K. Plastic deformation of alloys with submicron-grained structure. Mater. Sci. Eng. A, 1991, 137, 35.

[6]

Jia D., Wang Y.M., Ramesh K.T., Ma E., Zhu Y.T., Valiev R.Z. Deformation behavior and plastic instabilities of ultrafine- grained titanium. Appl. Phys. Lett., 2001, 79(5): 611.

[7]

Iwahashi Y., Wang J.T., Horita Z., Nemoto M., Langdon T.G. Principle of equal-channel angular pressing for the processing of ultra-fine grained materials. Scripta Mater., 1996, 35(2): 143.

[8]

Ivanisenko Y., Wunderlich R.K., Valiev R.Z., Fecht H.J. Annealing behaviour of nanostructured carbon steel produced by severe plastic deformation. Scripta Mater., 2003, 49(10): 947.

[9]

Yan F.K., Tao N.R., Lu K. Tensile ductility of nanotwinned austenitic grains in an austenitic steel. Scripta Mater., 2014, 84-85, 31.

[10]

Shen Y.F., Li X.X., Sun X., Wang Y.D., Zuo L. Twinning and martensite in a 304 austenitic stainless steel. Mater. Sci. Eng. A, 2012, 552, 514.

[11]

Lv J.L., Luo H.Y. Effect of nano/ultrafine grain with orientation obtained by reversion transformation on tensile behaviour of austenitic stainless steel. Mater. Sci. Technol., 2013, 29(4): 456.

[12]

Ye K.L., Luo H.Y., Lv J.L. Producing nanostructured 304 stainless steel by rolling at cryogenic temperature. Mater. Manuf. Processes, 2014, 29(6): 754.

[13]

Meyers M.A., Xu Y.B., Xue Q., Pérez-Prado M.T., McNelley T.R. Microstructural evolution in adiabatic shear localization in stainless steel. Acta Mater., 2003, 51(5): 1307.

[14]

Lu L., Chen X.H., Huang X.X., Lu K. Revealing the maximum strength in nanotwinned copper. Science, 2009, 323(5914): 607.

[15]

Lee W.S., Lin C.F. Comparative study of the impact response and microstructure of 304L stainless steel with and without prestrain. Metall. Trans. A, 2002, 33(9): 2801.

[16]

Lee W.S., Lin C.F., Chen T.H., Yang M.C. High temperature microstructural evolution of 304L stainless steel as function of pre-strain and strain rate. Mater. Sci. Eng. A, 2010, 527(13-14): 3127.

[17]

Sun P.L., Zhao Y.H., Cooley J.C., Kassner M.E., Horita Z., Langdon T.G., Lavernia E.J., Zhu Y.T. Effect of stacking fault energy on strength and ductility of nanostructured alloys: an evaluation with minimum solution hardening. Mater. Sci. Eng. A, 2009, 525(1-2): 83.

[18]

Shen Y.F., Zhao X.M., Sun X., Wang Y.D., Zuo L. Ultrahigh strength of ultrafine grained austenitic stainless steel induced by accumulative rolling and annealing. Scripta Mater., 2014

[19]

Kumar B.R., Raabe D. Tensile deformation characteristics of bulk ultrafine-grained austenitic stainless steel produced by thermal cycling. Scripta Mater., 2012, 66(9): 634.

[20]

Sabooni S., Karimzadeh F., Enayati M.H., Ngan A.H.W. The role of martensitic transformation on bimodal grain structure in ultrafine grained AISI 304L stainless steel. Mater. Sci. Eng. A, 2015, 636, 221.

[21]

Das J. Evolution of nanostructure in a-brass upon cryorolling. Mater. Sci. Eng. A, 2011, 530(1): 675.

[22]

AIP Adv., 2014, 4(6)

[23]

Kumar N.K., Roy B., Das J. Effect of twin spacing, dislocation density and crystallite size on the strength of nanostructured a-brass. J. Alloys Compd., 2015, 618, 139.

[24]

Moskalenko V.A., Smirnov A.R., Smolyanets R.V. Low-temperature plastic deformation and strain-hardening of nanocrystalline titanium. Low Temp. Phys., 2014, 40, 837.

[25]

Roy B., Kumar R., Das J. Effect of cryorolling on the microstructure and tensile properties of bulk nano-austenitic stainless steel. Mater. Sci. Eng. A, 2015, 631, 241.

[26]

Li P.Y., Xiong Y., Chen L.F., Ren F.Z., Wang X.G. Effect of cryorolling on microstructure and mechanical properties of AISI 310S stainless steel. Trans. Mater. Heat Treat., 2015, 36(3): 112.

[27]

Xiong Y., Wang J.B., Chen L.F., Lu Y., Ren F.Z., Zhang L.L., Ma J.L. Effect of annealing process on microstructure and mechanical properties of cryorolled AISI310S austenite stainless steel. Trans. Mater. Heat Treat., 2016, 37(4): 101.

[28]

Shi J.T., Hou L.G., Zuo J.R., Lu L., Cui H., Zhang J.S. Quantitative analysis of the martensite transformation and microstructure characterization during cryogenic rolling of a 304 austenitic stainless steel. Acta Metall. Sin., 2016, 52(8): 945.

[29]

Moser N.H., Gross T.S., Korkolis Y.P. Martensite formation in conventional and isothermal tension of 304 austenitic stainless steel measured by X-ray diffraction. Metall. Mater. Trans. A, 2014, 45(11): 4891.

[30]

Cullity B.D., Stock S.R. Elements of X-ray Diffraction, 2001 40.

[31]

De A.K., Murdock D.C., Mataya M.C., Speer J.G., Matlock D.K. Quantitative measurement of deformation-induced martensite in 304 stainless steel by X-ray diffraction. Scripta Mater., 2004, 50(12): 1445.

[32]

Huang X.M., Jie T. Material Analysis Test Method, 2008, Beijing, National Defense Industry Press 206.

[33]

Xu Z.Y. Martensite Transformation and Martensite, 1980, Beijing, Science Press 479.

[34]

Shintani T., Murata Y. Evaluation of the dislocation density and dislocation character in cold rolled type 304 steel determined by profile analysis of X-ray diffraction. Acta Mater., 2011, 59(11): 4314.

[35]

Mao W.M., Zhao X.B. Recrystallization and Grain Growth, 1994, Beijing, Metallurgical Industry Press 218.

[36]

Forouzan F., Kermanpur A., Najafizadeh A., Hedayati A. Processing of nano/submicron grained stainless steel 304L by an advanced thermomechanical process. Int. J. Mod. Phys. Conf. Ser., 2012, 5, 383.

[37]

Shakhova I., Dudko V., Belyakov A., Tsuzaki K., Kaibyshev R. Effect of large strain cold rolling and subsequent annealing on microstructure and mechanical properties of an austenitic stainless steel. Mater. Sci. Eng. A, 2012, 545, 176.

[38]

Ma Y.Q., Jin J.E., Lee Y.K. A repetitive thermomechanical process to produce nano-crystalline in a metastable austenitic steel. Scripta Mater., 2005, 52(12): 1311.

AI Summary AI Mindmap
PDF

100

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/