A new synthetic route to MgO–MgAl2O4–ZrO2 highly dispersed composite material through formation of Mg5Al2.4Zr1.7O12 metastable phase: synthesis and physical properties

Peng Jiang , Guo-xiang Yin , Ming-wei Yan , Jia-lin Sun , Bin Li , Yong Li

International Journal of Minerals, Metallurgy, and Materials ›› 2017, Vol. 24 ›› Issue (3) : 332 -341.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2017, Vol. 24 ›› Issue (3) : 332 -341. DOI: 10.1007/s12613-017-1412-7
Article

A new synthetic route to MgO–MgAl2O4–ZrO2 highly dispersed composite material through formation of Mg5Al2.4Zr1.7O12 metastable phase: synthesis and physical properties

Author information +
History +
PDF

Abstract

Mg5Al2.4Zr1.7O12 metastable phase was successfully synthesized from analytical-grade MgO, α-Al2O3, MgAl2O4, and ZrO2 under an N2 atmosphere. The sintering temperature was varied from 1650 to 1780°C, and the highest amount of Mg5Al2.4Zr1.7O12 appeared in the composite material when the sintering temperature was 1760°C. According to our research of the formation mechanism of Mg5Al2.4Zr1.7O12, the formation and growth of MgAl2O4 dominated when the temperature was not higher than 1650°C. When the temperature was higher than 1650°C, MgO and ZrO2 tended to diffuse into MgAl2O4 and the Mg5Al2.4Zr1.7O12 solid solution was formed. When the temperature reached 1760°C, the formation of Mg5Al2.4Zr1.7O12 was completed. The effect of MgAl2O4 spinel crystals was also studied, and their introduction into the composite material promoted the formation and growth of Mg5Al2.4Zr1.7O12. A highly dispersed MgO–MgAl2O4–ZrO2 composite material was prepared through the decomposition of the Mg5Al2.4Zr1.7O12 metastable phase. The as-prepared composite material showed improved overall physical properties because of the good dispersion of MgO, MgAl2O4, and ZrO2 phases.

Keywords

metastable phases / formation mechanisms / composite materials / refractory materials / synthesis / physical properties

Cite this article

Download citation ▾
Peng Jiang, Guo-xiang Yin, Ming-wei Yan, Jia-lin Sun, Bin Li, Yong Li. A new synthetic route to MgO–MgAl2O4–ZrO2 highly dispersed composite material through formation of Mg5Al2.4Zr1.7O12 metastable phase: synthesis and physical properties. International Journal of Minerals, Metallurgy, and Materials, 2017, 24(3): 332-341 DOI:10.1007/s12613-017-1412-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Aksel C., Rand B., Riley F.L., Warren P.D. Mechanical properties of magnesia–spinel composites. J.^Eur. Ceram. Soc., 2002, 22(5): 745.

[2]

Ghosh A., Sarkar R., Mukherjee B., Das S.K. Effect of spinel content on the properties of magnesia–spinel composite refractory. J.^Eur. Ceram. Soc., 2004, 24(7): 2079.

[3]

Jiang P., Chen J., Yan M.W., Li B., Su J.D., Hou X.M. Morphology characterization of periclase–hercynite refractories by reaction sintering. Int. J.^Miner. Metall. Mater., 2015, 22(11): 1219.

[4]

Mohapatra D., Sarkar D. Preparation of MgO–MgAl2O4 composite for refractory application. J.^Mater. Process. Technol., 2007, 189(1-3): 279.

[5]

Gao C.H., Jiang P.J., Li Y., Sun J.L., Zhang J.J., Yang H.Y. One step sintering of homogenized bauxite raw material and kinetic study. Int. J.^Miner. Metall. Mater., 2016, 23(10): 1231.

[6]

Aksel C., Warren P.D. Work of fracture and fracture surface energy of magnesia–spinel composites. Compos. Sci. Technol., 2003, 63(10): 1433.

[7]

Aksel C., Warren P.D., Riley F.L. Fracture behavior of magnesia and magnesia–spinel composites before and after thermal shock. J.^Eur. Ceram. Soc., 2004, 24(8): 2407.

[8]

Szczerba J. Chemical corrosion of basic refractories by cement kiln materials. Ceram. Int., 2010, 36, 1877.

[9]

Serena S., Sainz M.A., Caballero A. Corrosion behavior of MgO–CaZrO3 refractory matrix by clinker. J.^Eur. Ceram. Soc., 2004, 24(8): 2399.

[10]

Ceylantekin R., Aksel C. Improvements on corrosion behaviours of MgO−spinel composite refractories by addition of ZrSiO4. J.^Eur. Ceram. Soc., 2012, 32(4): 727.

[11]

Petkov V., Jones P.T., Boydens E., Blanpain B., Wollants P. Chemical corrosion mechanisms of magnesia–chromite and chrome-free refractory bricks by copper metal and anode slag. J.^Eur. Ceram. Soc., 2007, 27(6): 2433.

[12]

Karakus M., Crites M.D., Schlesinger M.E. Cathodoluminescence microscopy characterization of chrome-free refractories for copper smelting and converting furnaces. J.^Microsc., 2000, 200, 50.

[13]

Jones P.T., Vleugels J., Volders I., Blanpain B., Van der Biest O., Wollants P. A study of slag-infiltrated magnesia–chromite refractories using hybrid microwave heating. J.^Eur. Ceram. Soc., 2002, 22, 903.

[14]

Malfliet A., Lotfian S., Scheunis L., Petkov V., Pandelaers L., Jones P.T., Blanpain B. Degradation mechanisms and use of refractory linings in copper production processes: a critical review. J.^Eur. Ceram. Soc., 2014, 34(3): 849.

[15]

González C.A.R., Caley W.F., Drew R.A.L. Copper matte penetration resistance of basic refractories. Metall. Mater. Trans. B, 2007, 38(2): 167.

[16]

Ceylantekin R., Aksel C. Improvements on the mechanical properties and thermal shock behavior of MgO−spinel composites refractories by ZrO2 incorporation. Ceram. Int., 2012, 38(2): 995.

[17]

Ganesh I., Ferreria J.M.F. Synthesis and characterization of MgAl2O4−ZrO2 composites. Ceram. Int., 2009, 35(1): 259.

[18]

Chen R.R., He P.X., Mou J.N., Wang N. Research of slag corrosion resistance of chrome free refractories for RH vessel lining. Refractories, 2005, 39(5): 357.

[19]

Sahin B., Aksel C. Developments on the mechanical properties of MgO−MgAl2O4 composite refractories by ZrSiO4–3mol% Y2O3 addition. J.^Eur. Ceram. Soc., 2012, 32(1): 49.

[20]

Ceylantekin R., Aksel C. The comparison of mechanical behavior of MgO−MgAl2O4 with MgO−ZrO2 and MgO−MgAl2O4−ZrSiO4 composite refractories. Ceram. Int., 2012, 38(2): 1409.

[21]

Yin G.X., Pan B., Gao X.K., Song Q. Corrosion resistance mechanism of magnesia zirconia brick to RH furnace slag. Refractories, 2010, 44(4): 413.

[22]

McKittrick J., Kalonji G. Non-stoichiometry and defect structures in rapidly solidified MgO−Al2O3−ZrO2 ternary eutectics. Mater. Sci. Eng. A, 1997, 231(1-2): 90.

[23]

Tassot P., König G., Seifert F.A., Liebau F. Subsolidus, high temperature phase relations in the systems Al2O3–Cr2O3–ZrO2, MgO–Cr2O3–ZrO2, and MgO–Al2O3–ZrO2. J.^Mater. Sci., 1986, 21(10): 3479.

[24]

Tassot P., König G., Liebau F., Seifert F. A new magnesium aluminium zirconium oxide, Mg5+xAl2.4–xZr1.7+0.25xO12 with–0.4≤x≤0.4. J.^Appl. Cryst., 1983, 16, 649.

AI Summary AI Mindmap
PDF

105

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/