Reaction mechanism for in-situ β-SiAlON formation in Fe3Si–Si3N4–Al2O3 composites

Hai-xia Qin , Yong Li , Li-xiong Bai , Meng-long Long , Wen-dong Xue , Jun-hong Chen

International Journal of Minerals, Metallurgy, and Materials ›› 2017, Vol. 24 ›› Issue (3) : 324 -331.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2017, Vol. 24 ›› Issue (3) : 324 -331. DOI: 10.1007/s12613-017-1411-8
Article

Reaction mechanism for in-situ β-SiAlON formation in Fe3Si–Si3N4–Al2O3 composites

Author information +
History +
PDF

Abstract

In this work, Fe3Si–Si3N4–Al2O3 composites were prepared at 1300°C in an N2 atmosphere using fused corundum and tabular alumina particles, Al2O3 fine powder, and ferrosilicon nitride (Fe3Si–Si3N4) as raw materials and thermosetting phenolic resin as a binder. The effect of ferrosilicon nitride with different concentrations (0wt%, 5wt%, 10wt%, 15wt%, 20wt%, and 25wt%) on the properties of Fe3Si–Si3N4–Al2O3 composites was investigated. The results show that the apparent porosity varies between 10.3% and 17.3%, the bulk density varies from 2.94 g/cm3 and 3.30 g/cm3, and the cold crushing strength ranges from 67 MPa to 93 MPa. Under the experimental conditions, ferrosilicon nitride, whose content decreases substantially, is unstable; part of the ferrosilicon nitride is converted into Fe2C, whereas the remainder is retained, eventually forming the ferrosilicon alloy. Thermodynamic assessment of the Si5AlON7 indicated that the ferrosilicon alloy accelerated the reactions between Si3N4 and α-Al2O3 fine powder and that Si in the ferrosilicon alloy was nitrided directly, forming β-SiAlON simultaneously. In addition, fused corundum did not react directly with Si3N4 because of its low reactivity.

Keywords

alumina / ferrosilicon nitride / SiAlON / liquid sintering / reaction mechanisins

Cite this article

Download citation ▾
Hai-xia Qin, Yong Li, Li-xiong Bai, Meng-long Long, Wen-dong Xue, Jun-hong Chen. Reaction mechanism for in-situ β-SiAlON formation in Fe3Si–Si3N4–Al2O3 composites. International Journal of Minerals, Metallurgy, and Materials, 2017, 24(3): 324-331 DOI:10.1007/s12613-017-1411-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Oyama Y. Solid solution in the ternary system Si3N4−AlN−Al2O3. Jpn. J.^Appl. Phys., 1972, 11(5): 760.

[2]

Jack K.H., Wilson W.I. Ceramics based on the Si−Al−O−N and related systems. Nature, 1972, 238(80): 28.

[3]

Jack K.H. Sialons and related nitrogen ceramics. J.^Mater. Sci., 1976, 11(6): 1135.

[4]

Bandyopadhyay S. The in situ formation of Sialon composite phases. J.^Eur. Ceram. Soc., 1997, 17(7): 929.

[5]

Joshi B., Lee H.H., Wang H., Fu Z.Y., Niihara K., Lee S.W. The effect of different rare earth oxides on mechanical and optical properties of hot pressed α/β-Sialon ceramics. J.^Eur. Ceram. Soc., 2012, 32(13): 3603.

[6]

Rouquié Y., Jones M.I., Brown I.W.M. Influence of nitrogen overpressure on the nitridation, densification and formation of β-SiAlONs produced by silicothermal reduction. J.^Eur. Ceram. Soc., 2013, 33(4): 859.

[7]

Ekstrom T., Kall P.O., Nygren M., Olsson P.O. Mixed and β-(Si–Al–O–N) materials with yttria and neodymia additions. Mater. Sci. Eng. A, 1988, 105-106(88): 161.

[8]

Ma B.Y., Li Y., Yan C., Ding Y.S. Effect of synthesis temperature and raw material composition on preparation of β-sialon based composites from fly ash. Trans. Nonferrous Met. Soc. China, 2012, 22(1): 129.

[9]

Zhu B.Q., Zhu Y.N., Li X.C., Zhao F. Effect of ceramic bonding phases on the thermal-mechanical properties of Al2O3−C refractories. Ceram. Int., 2013, 39(6): 6069.

[10]

Zhao H., Wang P.Y., Yu J.L., Zhang J. A mechanistic study on the synthesis of β-Sialon whiskers from coal fly ash. Mater. Res. Bull., 2015, 65(8): 47.

[11]

Kingery W.D., Bowen H.K., Uhlmann D.R. Introduction to Ceramics, 2010, Beijing, High Education Press, 421.

[12]

Moulson A.J. Reaction-bonded silicon nitride: its formation and properties. J.^Mater. Sci., 1979, 14(5): 1071.

[13]

Li Y.J., Yu H.L., Jin H.Y., Liu D.H., Qiao G.J., Jin Z.H., Shi Z.Q. Effects of FeMo alloy on nitridation and mechanical properties of reaction bonded β-Sialon/FeMo ceramic composites. J.^Alloys Compd., 2014, 616, 639.

[14]

Li Y.J., Yu H.L., Jin H.Y., Qiao G.J., Jin Z.H., Shi Z.Q. Properties of a reaction-bonded β-SiAlON ceramic doped with an FeMo alloy for application to molten aluminum environments. Int. J.^Miner. Met. Mater., 2015, 22(5): 530.

[15]

Sun X.L., Sun K.N., Sun X.N., Xing L.J., Liu Y., Qian L. Fabrication and mechanical properties of β-sialon–FexSiy–CNTs composites. J.^Mater. Sci., 2013, 48(19): 6673.

[16]

Li B., Chen J.H., Yan M.W., Su J.D., Sun J.L., Li Y. Morphology evolution and phase interactions of Fe-containing Si3N4 in vacuum high-temperature environment. ISIJ Int., 2016, 56(2): 189.

[17]

Kubaschewski O. Phase Diagrams of Binary Iron Alloy, 1993 380.

[18]

Turkdogan E.T. Physical Chemistry of High Temperature Technology, 1980, New York, Academic Press, 5.

[19]

Dong P.L., Wang X.D., Zhang M., Guo M., Li W.C. Thermodynamic study and syntheses of β-SiAlON Ceramics, Sci. China. Ser. E, 2009, 52(11): 3122.

[20]

Zhen Q., Wang F.M., Li W.C. Assessment and prediction of thermodynamic property of compounds in sialon system. Chin. J.^Rare Met., 1999, 23(4): 254.

[21]

Yanez T.R., Ruiz D., Barros J., Houbaert Y., Colás R. Study of deformation and aging behaviour of iron–silicon alloys. Mater. Sci. Eng. A, 2007, 447(1-2): 27.

[22]

Il’inskii A., Slyusarenko S., Slukhovskii O., Kaban I., Hoyer W. Structural properties of liquid Fe–Si alloys. J.^Non Cryst. Solids, 2002, 306(1): 90.

[23]

Shahien M., Radwan M., Kirihara S., Miyamoto Y., Sakurai T. Combustion synthesis of single-phase β-sialons (z = 2–4). J.^Eur. Ceram. Soc., 2010, 30(9): 1925.

[24]

Rouquié Y., Jones M.I. Influence of additives and compositions on the nitridation and formation of SiAlONs produced by reaction bonding and silicothermal reduction. J.^Asia Ceram. Soc., 2013, 1(1): 53.

AI Summary AI Mindmap
PDF

114

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/