PDF
Abstract
To investigate the interdiffusion behavior of Ge-modified silicide coatings on an Nb–Si-based alloy substrate, the coating was oxidized at 1250°C for 5, 10, 20, 50, or 100 h. The interfacial diffusion between the (Nb,X)(Si,Ge)2 (X = Ti, Cr, Hf) coating and the Nb–Si based alloy was also examined. The transitional layer is composed of (Ti,Nb)5(Si,Ge)4 and a small amount of (Nb,X)5(Si,Ge)3. With increasing oxidation time, the thickness of the transitional layer increases because of the diffusion of Si from the outer layer to the substrate, which obeys a parabolic rate law. The parabolic growth rate constant of the transitional layer under oxidation conditions is 2.018 μm·h−1/2. Moreover, the interdiffusion coefficients of Si in the transitional layer were determined from the interdiffusion fluxes calculated directly from experimental concentration profiles.
Keywords
silicides
/
coatings
/
intermetallics
/
oxidation
/
interdiffusion
Cite this article
Download citation ▾
Jin-long Li, Wan Wang, Chun-gen Zhou.
Oxidation and interdiffusion behavior of a germanium-modified silicide coating on an Nb–Si-based alloy.
International Journal of Minerals, Metallurgy, and Materials, 2017, 24(3): 289-296 DOI:10.1007/s12613-017-1407-4
| [1] |
Perepezko J.H. The hotter the engine, the better. Science, 2009, 326(5956): 1068.
|
| [2] |
Gong W.Y., Zhang L.J., Yao D.Z., Zhou C.G. Diffusivities and atomic mobilities in fcc Ni–Pt alloys. Scripta Mater., 2009, 61(1): 100.
|
| [3] |
Zhou C.G., Wang C.L., Song Y.X. Evaluation of cyclic oxidation of thermal barrier coatings exposed to NaCl vapor by finite element method. Mater. Sci. Eng. A, 2008, 490(1-2): 351.
|
| [4] |
Emran K.M., Arab S.T., Al-Turkustani A.M., Al-Turaif H.A. Temperature effect on the corrosion and passivation characterization of Ni82.3Cr7Fe3Si4.5B3.2 alloy in acidic media. Int. J.^Miner. Metall. Mater., 2016, 23(2): 205.
|
| [5] |
Zhou C.G., Yu J.S., Gong S.K., Xu H.B. Influence of water vapor on the high temperature oxidation behavior of thermal barrier coatings. Mater. Sci. Eng. A, 2003, 348(1-2): 327.
|
| [6] |
Guo H.B., Gong S.K., Zhou C.G., Xu H.B. Investigation on hot-fatigue behaviors of gradient thermal barrier coatings by EB-PVD. Surf. Coat. Technol., 2001, 148(2-3): 110.
|
| [7] |
Kumar U.P., Kennady C.J. Effect of benzaldehyde on the electrodeposition and corrosion properties of Ni–W alloys. Int. J.^Miner. Metall. Mater., 2015, 22(10): 1060.
|
| [8] |
Huang H., Liu C., Ni L.Y., Zhou C.G. Evaluation of microstructural evolution of thermal barrier coatings exposed to Na2SO4 using impedance spectroscopy. Corros. Sci., 2011, 53(4): 1369.
|
| [9] |
Yao D.Z., Cai R., Zhou C.G., Sha J.B., Jiang H.R. Experimental study and modeling of high temperature oxidation of Nb-base in situ composites. Corros. Sci., 2009, 51(2): 364.
|
| [10] |
Yazdani Z., Karimzadeh F., Abbasi M.H., Amini A. Characterization of NbSi2−Al2O3 nanocomposite coatings prepared with plasma spraying mechanically alloyed powders. Int. J.^Miner. Metall. Mater., 2015, 22(7): 748.
|
| [11] |
Zelenitsas K., Tsakiropoulos P. Effect of Al, Cr and Ta additions on the oxidation behaviour of Nb−Ti−Si in situ composites at 800°C. Mater. Sci. Eng. A, 2006, 416(1-2): 269.
|
| [12] |
Wang J., Guo X.P., Guo J.M. Effects of B on the microstructure and oxidation resistance of Nb−Ti−Si-based ultrahigh-temperature alloy. Chin. J.^Aeronaut, 2009, 22(5): 544.
|
| [13] |
Geng J., Tsakiropoulos P. A study of the microstructures and oxidation of Nb−Si−Cr−Al−Mo in situ composites alloyed with Ti. Hf, Sn, Intermetallics, 2007, 15(3): 382.
|
| [14] |
Rauf A., Yu Q., Jin L., Zhou C. Microstructure and thermal properties of nanostructured lanthana-doped yttria-stabilized zirconia thermal barrier coatings by air plasma spraying. Scripta Mater., 2012, 66(2): 109.
|
| [15] |
Majumdar S., Arya A., Sharma I.G., Suri A.K., Banerjee S. Deposition of aluminide and silicide based protective coatings on niobium. Appl. Surf. Sci., 2010, 257(2): 635.
|
| [16] |
Chow T.P., Hamzeh K., Steckl A.J. Thermal oxidation of niobium silicide thin films. J.^Appl. Phys., 1983, 54(5): 2716.
|
| [17] |
Tian X.D., Guo X.P. Structure of Al-modified silicide coatings on an Nb-based ultrahigh temperature alloy prepared by pack cementation techniques. Surf. Coat. Technol., 2009, 203(9): 1161.
|
| [18] |
Kudryashov A.E., Potanin A.Y., Lebedev D.N., Sukhorukova I.V., Shtansky D.V., Levashov E.A. Structure and properties of Cr−Al−Si−B coatings produced by pulsed electrospark deposition on a nickel alloy. Surf. Coat. Technol., 2016, 285, 278.
|
| [19] |
Qiao Y.Q., Guo X.P. Formation of Cr-modified silicide coatings on a Ti−Nb−Si based ultrahigh-temperature alloy by pack cementation process. Appl. Surf. Sci., 2010, 256(24): 7462.
|
| [20] |
Wang W., Yuan B.F., Zhou C.G. Formation and oxidation resistance of germanium modified silicide coating on Nb based in situ composites. Corros. Sci., 2014, 80, 164.
|
| [21] |
Pang J., Wang W., Zhou C.G. Microstructure evolution and oxidation behavior of B modified MoSi2 coating on Nb-Si based alloys. Corros. Sci., 2016, 105, 1.
|
| [22] |
Zheng Z.K., Mao W.M., Liu Z.Y., Wang D., Yue R. Refinement of primary Si grains in Al–20% Si alloy slurry through serpentine channel pouring process. Int. J.^Miner. Metall. Mater., 2016, 23(5): 572.
|
| [23] |
Wang W., Zhou C.G. Characterization of microstructure and oxidation resistance of Y and Ge modified silicide coating on Nb–Si based alloy. Corros. Sci., 2016, 110, 114.
|
| [24] |
Mueller A., Wang G., Rapp R.A. Oxidation behavior of tungsten and germanium-alloyed molybdenum disilicide coatings. Mater. Sci. Eng. A, 1992, 155(1-2): 199.
|
| [25] |
Cockeram B.V., Rapp R.A. Oxidation-resistant boronand germanium-doped silicide coatings for refractory metals at high temperature. Mater. Sci. Eng. A, 1995, 192-193, 980.
|
| [26] |
Zhang P., Guo X.P. Y and Al modified silicide coatings on an Nb-Ti-Si based ultrahigh temperature alloy prepared by pack cementation process. Surf. Coat. Technol., 2011, 206(2-3): 446.
|
| [27] |
Wang W., Zhou C.G. Hot corrosion behaviour of Nbss/Nb5Si3 in situ composites in the mixture of Na2SO4 and NaCl melts. Corros. Sci., 2013, 74, 345.
|
| [28] |
Sun Z.P., Guo X.P., Guo B.H. Effect of B and Ti on the directionally solidified microstructure of the Nb–Si alloys. Int. J.^Refract. Met. Hard Mater., 2015, 51, 243.
|
| [29] |
Zhao J.C., Jackson M.R., Peluso L.A. Determination of the Nb−Cr−Si phase diagram using diffusion multiples. Acta Mater., 2003, 51(20): 6395.
|
| [30] |
Shao G. Thermodynamic modelling of the Cr−Nb−Si system. Intermetallics, 2005, 13(1): 69.
|
| [31] |
Li X., Guo X.P., Qiao Y.Q. Structure and oxidation behavior of Zr−Y modified silicide coatings prepared on an Nb−Ti−Si−Cr based ultrahigh temperature alloy. Oxid. Met., 2015, 83(3): 253.
|
| [32] |
Michihisa F., Yuzi M., Shigenari H., Toshio N., Kazusi S., Akio K., Ryouhei T. Coatings of Nb-based alloy by Cr and/or Al pack cementations and its oxidation behavior in Air at 1273–1473 K. Mater. Trans., 2003, 44(4): 731.
|
| [33] |
Milanese C., Buscaglia V., Maglia F., Anselmi-Tamburini U. Reactive growth of niobium silicides in bulk diffusion couples. Acta Mater., 2003, 51(16): 4837.
|
| [34] |
Prasad S., Paul A. Growth mechanism of phases by interdiffusion and diffusion of species in the niobium–silicon system. Acta Mater., 2011, 59(4): 1577.
|
| [35] |
Dayananda M.A. An analysis of concentration profiles for fluxes, diffusion depths, and zero-flux planes in multicomponent diffusion. Metall. Trans. A, 1983, 14(9): 1851.
|
| [36] |
Tortorici P.C., Dayananda M.A. Interdiffusion and diffusion structure development in selected refractory metal silicides. Mater. Sci. Eng. A, 1999, 261(1-2): 64.
|
| [37] |
Yeh C.L., Wang H.J., Chen W.H. A comparative study on combustion synthesis of Ti–Si compounds. J.^Alloys Compd., 2008, 450(1-2): 200.
|