Reconstruction of three-dimensional grain structure in polycrystalline iron via an interactive segmentation method

Min-nan Feng , Yu-cong Wang , Hao Wang , Guo-quan Liu , Wei-hua Xue

International Journal of Minerals, Metallurgy, and Materials ›› 2017, Vol. 24 ›› Issue (3) : 257 -263.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2017, Vol. 24 ›› Issue (3) : 257 -263. DOI: 10.1007/s12613-017-1403-8
Article

Reconstruction of three-dimensional grain structure in polycrystalline iron via an interactive segmentation method

Author information +
History +
PDF

Abstract

Using a total of 297 segmented sections, we reconstructed the three-dimensional (3D) structure of pure iron and obtained the largest dataset of 16254 3D complete grains reported to date. The mean values of equivalent sphere radius and face number of pure iron were observed to be consistent with those of Monte Carlo simulated grains, phase-field simulated grains, Ti-alloy grains, and Ni-based super alloy grains. In this work, by finding a balance between automatic methods and manual refinement, we developed an interactive segmentation method to segment serial sections accurately in the reconstruction of the 3D microstructure; this approach can save time as well as substantially eliminate errors. The segmentation process comprises four operations: image preprocessing, breakpoint detection based on mathematical morphology analysis, optimized automatic connection of the breakpoints, and manual refinement by artificial evaluation.

Keywords

polycrystalline iron / three-dimensional structure / grain boundaries / image processing / digitizers

Cite this article

Download citation ▾
Min-nan Feng, Yu-cong Wang, Hao Wang, Guo-quan Liu, Wei-hua Xue. Reconstruction of three-dimensional grain structure in polycrystalline iron via an interactive segmentation method. International Journal of Minerals, Metallurgy, and Materials, 2017, 24(3): 257-263 DOI:10.1007/s12613-017-1403-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Liu G. Applied stereology in materials science and engineering. J.^Microsc., 1993, 171(1): 58.

[2]

Patterson B.R., Rowenhorst D.J., Tikare V., DeHoff R.T., Kaub T.M. Affinities for topological arrangements in grain structures. Acta Mater., 2014, 79, 413.

[3]

Wang H., Liu G.Q., Ullah A., Luan J.H. Topological correlations of three-dimensional grains. Appl. Phys. Lett., 2012, 101(4): 3.

[4]

Rhines F.N., Craig K.R., Rousse D.A. Measurement of average grain volume and certain topological parameters by serial section analysis. Metall. Trans. A, 1976, 7(11): 1729.

[5]

Comer M., Bouman C.A., Graef M.D., Simmons J.P. Bayesian methods for image segmentation. JOM, 2011, 63(7): 55.

[6]

Huffman L., Simmons J., Graef M.D., Pollak I. Shape priors for MAP segmentation of alloy micrographs using graph cuts. Proc. IEEE Stat. Signal Process, 2011 662.

[7]

Li Q., Ni X., Liu G. Ceramic image processing using the second curvelet transform and watershed algorithm. Proceedings of the Robotics and Biomimetics, 2007 2040.

[8]

Ullah A., Liu G.Q., Luan J.H., Li W.W., Rahman M.U., Ali M. Three-dimensional visualization and quantitative characterization of grains in polycrystalline iron. Mater. Charact., 2014, 91, 66.

[9]

Mukhopadhyay S., Chanda B. Multiscale morphological segmentation of gray-scale images. IEEE Trans. Image Process., 2003, 12(5): 534.

[10]

Waggoner J., Zhou Y.J., Simmons J., Graef M.D., Wang S. Graph-cut based interactive segmentation of 3D materials-science images. Mach. Vis. Appl., 2014, 25(6): 1617.

[11]

Cantwell P.R., Tang M., Dillon S.J., Luo J., Rohrer G.S., Harmer M.P. Grain boundary complexions. Acta Mater., 2014, 62, 2.

[12]

Canny J. A computational approach to edge detection, IEEE Trans. Pattern Anal. Mach. Intell., 1986, 8(6): 680.

[13]

Sharifi M., Fathy M., Mahmoudi M.T. A classified and comparative study of edge detection algorithms. Proceedings of the Information Technology: Coding and Computing, 2002 118.

[14]

Shen L.Q., Shen D.G., Qi F.H. Edge detection on real time using LOG filter. Proceedings of the Speech, Image Processing and Neural Networks, 1994 38.

[15]

Kim S. Min-local-LoG filter for detecting small targets in cluttered background. Electron. Lett., 2011, 47(2): 105.

[16]

Haralick R.M., Sternberg S.R., Zhuang X.H. Image analysis using mathematical morphology. IEEE Trans. Pattern Anal. Mach. Intell., 1987, 9(4): 533.

[17]

Murray P., Marshall S. Chapter Five-A review of recent advances in the hit-or-miss transform. Adv. Imaging Electron Phys., 2013, 175, 221.

[18]

Waggoner J., Zhou Y.J., Simmons J., Graef M.D., Wang S. Topology-preserving multi-label image segmentation. Proceedings of the 2015 IEEE Winter Conference on Applications of Computer Vision, 2015 1066.

[19]

Zhang C., Enomoto M., Suzuki A., Ishimaru T. Characterization of three-dimensional grain structure in polycrystalline iron by serial sectioning. Metall. Mater. Trans. A, 2004, 35(7): 1927.

[20]

Kelly M.N., Glowinski K., Nuhfer N.T., Rohrer G.S. The five parameter grain boundary character distribution of α-Ti determined from three-dimensional orientation data. Acta Mater., 2016, 111, 23.

[21]

Rowenhorst D.J., Lewis A.C., Spanos G. Three-dimensional analysis of grain topology and interface curvature in a β-titanium alloy. Acta Mater., 2010, 58(16): 5513.

[22]

Groeber M., Ghosh S., Uchic M.D., Dimiduk D.M. A framework for automated analysis and simulation of 3D polycrystalline microstructures: Part 1. Statistical characterization, Acta Mater., 2008, 56(6): 1263.

[23]

Chang K., Krill C.E.III Du Q., Chen L.Q. Evaluating microstructural parameters of three-dimensional grains generated by phase-field simulation or other voxel-based techniques. Modell. Simul. Mater. Sci. Eng., 2012, 20(7): 4.

AI Summary AI Mindmap
PDF

134

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/