PDF
Abstract
Low-nickel matte was intensively characterized, and Ni, Cu, and Co were determined to exist mainly as (Fe,Ni)9S8 and FeNi3, Cu5FeS4, and (Fe,Ni)9S8 and Fe3O4 (in isomorphic form), respectively. The efficient and selective extraction of Ni, Cu, and Co from the low-nickel matte in an (NH4)2S2O8/NH3·H2O solution system was studied. The effects of (NH4)2S2O8 and NH3·H2O concentrations, leaching time, and leaching temperature on the metal extraction efficiency were systematically investigated. During the oxidative ammonia leaching process, the metal extraction efficiencies of Ni 81.07%, Cu 93.81%, and Co 71.74% were obtained under the optimal conditions. The relatively low leaching efficiency of Ni was mainly ascribed to NiFe alloy deactivation in ammonia solution. By introducing an acid pre-leaching process into the oxidative ammonia leaching process, we achieved the high extraction efficiencies of 98.03%, 99.13%, and 85.60% for the valuable metals Ni, Cu, and Co, respectively, from the low-nickel matte.
Keywords
matte
/
leaching
/
extraction
/
nickel
/
copper
/
cobalt
Cite this article
Download citation ▾
Guang-ju Chen, Jian-ming Gao, Mei Zhang, Min Guo.
Efficient and selective recovery of Ni, Cu, and Co from low-nickel matte via a hydrometallurgical process.
International Journal of Minerals, Metallurgy, and Materials, 2017, 24(3): 249-256 DOI:10.1007/s12613-017-1402-9
| [1] |
Lu C.Y., Lu X.G., Zou X.L., Cheng H.W., Xu Q. Current situation and utilization technology of nickel ore in China. Chin. J.^Nat., 2015, 37(4): 269.
|
| [2] |
Lu Z.Y., Jeffrey M.I., Zhu Y., Lawson F. Studies of pentlandite leaching in mixed oxygenated acidic chloride–sulfate solutions. Hydrometallurgy, 2000, 56(1): 63.
|
| [3] |
Su S.G., Li C.S., Zhou M.F., Ripley E.M., Qi L. Controls on variations of platinum-group element concentrations in the sulfide ores of the Jinchuan Ni–Cu deposit, western China. Miner. Deposita, 2008, 43(6): 609.
|
| [4] |
Franchuk A., Lightfoot P.C., Kontak D.J. High tenor Ni-PGE sulfide mineralization in the South Manasan ultramafic intrusion, Paleoproterozoic Thompson Nickel Belt, Manitoba, Canada. Ore Geol. Rev., 2016, 72(1): 434.
|
| [5] |
Warner A.E.M., Díaz C.M., Dalvi A.D., Mackey P.J., Tarasov A.V., Jones R.T. JOM world nonferrous smelter survey: Part IV.^Nickel: sulfide. JOM, 2007, 59(4): 58.
|
| [6] |
Karimov K.A., Kritskii A.V., Elfimova L.G., Naboichenko S.S. High-temperature sulfuric acid converter matte pressure leaching. Metallurgist, 2015, 59(7): 723.
|
| [7] |
Park K.H., Mohapatra D., Nam C.W., Kim H.I. A comparative study of different leaching processes for the extraction of Cu, Ni and Co from a complex matte. Korean J.^Chem. Eng., 2007, 24(5): 835.
|
| [8] |
Park K.H., Mohapatra D., Reddy B.R. A study on the acidified ferric chloride leaching of a complex (Cu–Ni–Co–Fe) matte. Sep. Purif. Technol., 2006, 51(3): 332.
|
| [9] |
Park K.H., Mohapatra D., Reddy B.R., Nam C.W. A study on the oxidative ammonia/ammonium sulphate leaching of a complex (Cu–Ni–Co–Fe) matte. Hydrometallurgy, 2007, 86(3-4): 164.
|
| [10] |
Muzenda E., Ramatsa I.M., Ntuli F., Abdulkareem A.S., Afolabi A.S. Parametric effects on leaching behavior of nickel–copper matte in ammonia. Part. Sci. Technol., 2013, 31(4): 319.
|
| [11] |
Liu X.W., Feng Y.L., Li H.R., Yang Z.C., Cai Z.L. Recovery of valuable metals from a low-grade nickel ore using an ammonium sulfate roasting-leaching process. Int. J.^Miner. Metall. Mater., 2012, 19(5): 377.
|
| [12] |
Xue J.Q., Lu X., Du Y.W., Mao W.B., Wang Y.J., Li J.X. Ultrasonic-assisted oxidation leaching of nickel sulfide concentrate. Chin. J.^Chem. Eng., 2010, 18(6): 948.
|
| [13] |
Baláž P., Boldižárová E., Achimovičová M., Kammel R. Leaching and dissolution of a pentlandite concentrate pretreated by mechanical activation. Hydrometallurgy, 2000, 57(1): 85.
|
| [14] |
Mohammadabad F.K., Hejazi S., Khaki J.V., Babakhani A. Mechanochemical leaching of chalcopyrite concentrate by sulfuric acid. Int. J.^Miner. Metall. Mater., 2016, 23(4): 380.
|
| [15] |
Onol K., Saridede M.N. Investigation on microwave heating for direct leaching of chalcopyrite ores and concentrates. Int. J.^Miner. Metall. Mater., 2013, 20(3): 228.
|
| [16] |
Meng X.H., Han K.N. The principles and applications of ammonia leaching of metals: a review. Miner. Process. Extr. Metall. Rev., 1996, 16(1): 23.
|
| [17] |
Yin F., Wang Z.W., Wang C.Y., Jiang P.H. Research on pressure leaching process for low nickel matte. Min. Metall., 2009, 18(4): 35.
|
| [18] |
Sheng M.W., Ji C.Q., Zhu C.L., Cai W. Experimental study on oxygen pressure and water leaching of low nickel matte. Yunnan Metall., 2012, 41(3): 32.
|
| [19] |
Turan M.D., Altundoğan H.S. Leaching of a copper flotation concentrate with ammonium persulfate in an autoclave system. Int. J.^Miner. Metall. Mater., 2014, 21(9): 862.
|
| [20] |
Liu Z.X., Yin Z.L., Hu H.P., Chen Q.Y. Leaching kinetics of low-grade copper ore containing calcium–magnesium carbonate in ammonia–ammonium sulfate solution with persulfate. Trans. Nonferrous Met. Soc. China, 2012, 22(11): 2822.
|
| [21] |
Babu M.N., Sahu K.K., Pandey B.D. Zinc recovery from sphalerite concentrate by direct oxidative leaching with ammonium, sodium and potassium persulphates. Hydrometallurgy, 2002, 64(2): 119.
|
| [22] |
Fischmann A.J., Dixon D.G. Awaruite (Ni3Fe) as a nickel resource-leaching with ammoniacal–ammonium solution containing citrate and thiosulfate. Hydrometallurgy, 2009, 99(3-4): 214.
|
| [23] |
D’Aloya A., Nikoloski A.N. The passivation of iron in ammoniacal solutions containing copper (II) ions. Hydrometallurgy, 2012, 111-112, 58.
|