Synthesis of glass ceramics from kaolin and dolomite mixture

Mohamed Reda Boudchicha , Fausto Rubio , Slimane Achour

International Journal of Minerals, Metallurgy, and Materials ›› 2017, Vol. 24 ›› Issue (2) : 194 -201.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2017, Vol. 24 ›› Issue (2) : 194 -201. DOI: 10.1007/s12613-017-1395-4
Article

Synthesis of glass ceramics from kaolin and dolomite mixture

Author information +
History +
PDF

Abstract

Cordierite- and anorthite-based binary glass ceramics of the CaO–MgO–Al2O3–SiO2 (CMAS) system were synthesized by mixing local and abundant raw minerals (kaolin and doloma by mass ratio of 82/18). A kinetics study reveals that the activation energy of crystallization (E a) calculated by the methods of Kissinger and Marotta are 438 kJ·mol−1 and 459 kJ·mol−1, respectively. The Avrami parameter (n) is estimated to be approximately equal to 1, corresponding to the surface crystallization mechanism. X-ray diffraction (XRD) analysis shows that the anorthite and cordierite crystals are precipitated from the parent glass as major phases. Anorthite crystals first form at 850°C, whereas the μ-cordierite phase appears after heat treatment at 950°C. Thereafter, the cordierite allotropically transforms to α-cordierite at 1000°C. Complete densification is achieved at 950°C; however, the density slightly decreases at higher temperatures, reaching a stable value of 2.63 kg·m−3 between 1000°C and 1100°C. The highest Vickers hardness of 6 GPa is also obtained at 950°C. However, a substantial decrease in hardness is recorded at 1000°C; at higher sintering temperatures, it slightly increases with increasing temperature as the α-cordierite crystallizes.

Keywords

glass ceramics / kaolinite / dolomite / crystallization / activation energy

Cite this article

Download citation ▾
Mohamed Reda Boudchicha, Fausto Rubio, Slimane Achour. Synthesis of glass ceramics from kaolin and dolomite mixture. International Journal of Minerals, Metallurgy, and Materials, 2017, 24(2): 194-201 DOI:10.1007/s12613-017-1395-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Harper C.A. Handbook of Ceramics Glasses, and Diamonds, 2001, New York, McGraw-Hill Professional

[2]

Bach H., Krause D. Low Thermal Expansion Glass ceramics, 2005 2 Berlin, Springer

[3]

Patridge G. An overview of glass ceramics: Part 1. Development and principal bulk applications. Glass Technol., 1994, 35(3): 116.

[4]

Pannhorst W. Glass ceramics: state-of-the-art. J. Non Cryst. Solids, 1997, 219, 198.

[5]

Shelestak L.J., Chavez R.A., Mackenzie J.D. Glasses and glass-ceramics from naturally occurring MgO–CaO–A12O3–SiO2 materials (II): crystallization behavior. J. Non Cryst. Solids, 1978, 27(1): 83.

[6]

Shelestak L.J., Chavez R.A., Mackenzie J.D., Dunn B. Glasses and glass-ceramics from naturally occurring MgO–CaO–A12O3–SiO2 materials (I): glass formation and properties. J. Non Cryst. Solids, 1978, 27(1): 75.

[7]

Yang C. The sintering characteristics of MgO–CaO–A12O3–SiO2 composite powder made by sol–gel method. Ceram. Int., 1998 243.

[8]

Vila J., Valentín C., Muñoz M.C., Alarcón J. Cristalización de cordierita en vidrios derivados del sistema cuaternario CaO–MgO–A12O3–SiO2: influencia de la composición del vidrio. Bol. Soc. Esp. Cerám. Vidrio, 1998, 37(5): 390.

[9]

Leonelli C., Manfredini T., Paganelli M., Pozzi P., Pellacani G.C. Crystallization of some anorthite-diopside glass precursors. J. Mater. Sci., 1991, 26(18): 5041.

[10]

Alvarez-Méndez A., Torres-González L.C., Alvarez N., Torres-Martinez L.M. Kinetic thermal analysis of glass ceramics from industrial wastes. J. Non Cryst. Solids, 2003, 329(1-3): 73.

[11]

Barbieri L., Corradi A., Lancellotti I., Oliveira A.P.N., Orestes A. Nucleation and crystal growth of a MgO–CaO–Al2O3–SiO2 glass with added steel fly ash. J. Am. Ceram. Soc., 2002, 85(3): 670.

[12]

Toya T., Tamura Y., Kameshima Y., Okada K. Preparation and properties of CaO–MgO–Al2O3–SiO2 glass-ceramics from kaolin clay refining waste (Kira) and dolomite. Ceram. Int., 2004, 30(6): 983.

[13]

Torres F.J., Alarcón J. Effect of MgO/CaO ratio on the microstructure of cordierite-based glass-ceramic glazes for floor tiles. Ceram. Int., 2005, 31(5): 683.

[14]

Torres F.J., Ruiz de Sola E., Alarcón J. Effect of boron oxide on the microstructure of mullite-based glass-ceramic glazes for floor-tiles in the CaO–MgO–Al2O3–SiO2 system. J. Eur. Ceram. Soc., 2006, 26(12): 2285.

[15]

Khater G.A. Glass-ceramics in the CaO–MgO–Al2O3–SiO2 system based on industrial waste materials. J. Non Cryst. Solids, 2010, 356(52-54): 3066.

[16]

Keyvani N., Marghussian V.K., Rezaie H.R., Kord M. Effect of Al2O3 content on crystallization behavior, Microstructure, and mechanical properties of SiO2–Al2O3–CaOMgO glass–ceramics. Int. J. Appl. Ceram. Technol, 2011, 8(1): 203.

[17]

Jang S., Kang S. Influence of MgO/CaO ratio on the properties of MgO–CaO–Al2O3–SiO2 glass-ceramics for LED packages. Ceram. Int., 2012, 38(1): S543.

[18]

Bridge D.R., Holland D., Macmillan P.W. Development of the alpha-cordierite phase in glass ceramics for use in electronic devices. Glass Technol., 1985, 26(6): 286.

[19]

Knickerbocker S.H., Kumar A.H., Herron L.W. Cordierite glass-ceramics for multilayer ceramic packaging. Am. Ceram. Soc. Bull., 1993, 72(1): 90.

[20]

Gdula R.A. Anorthite ceramic dielectrics. Am. Ceram. Soc. Bull., 1991, 50, 555.

[21]

Marques V.M.F., Tulyaganov D.U., Agathopoulos S., Gataullin V. Kh., Kothiyal G.P., Ferreira J.M.F. Low temperature synthesis of anorthite based glass-ceramics via sintering and crystallization of glass-powder compacts. J. Eur. Ceram. Soc., 2006, 26(13): 2503.

[22]

Yang C.F., Cheng C.M. The influence of B2O3 on the sintering of MgO–CaO–Al2O3–SiO2 composite glass powder. Ceram. Int., 1999, 25(4): 383.

[23]

Cheng C.M., Yang C.F., Lo S.H. The influence of crystallization on the flexural strength of MgO–CaO–Al2O3–SiO2 composite glass. Ceram. Int., 1999, 25(6): 581.

[24]

Kobayashi Y., Kato E. Low-temperature fabrication of anorthite ceramics. J. Am. Ceram. Soc., 1994, 77(3): 833.

[25]

Boudchicha M.R., Achour S., Harabi A. Crystallization and sintering of cordierite and anorthite based binary ceramics. J. Mater. Sci. Lett., 2001, 20(3): 215.

[26]

Harabi A., Boudchicha M.R., Aklouche N., Achour S. Phase transformation in kaolin−doloma mixture. Key Eng. Mater., 2002, 206-213, 111.

[27]

Boudchicha M.R., Achour S., Harabi A., Bonnet J.P. Temperature dependence of Young’s modulus in cordierite based ceramics. Algerian J. Adv. Mater., 2008, 5, 197.

[28]

Boudchicha M.R., Achour S., Bonnet J.P. Comportement thermique des melanges kaolin-dolomie. Verres Céram. Compos., 2012, 2(1): 26.

[29]

Capoglu A. A novel low-clay translucent whiteware based on anorthite. J. Eur. Ceram. Soc., 2011, 31(3): 321.

[30]

Cheng X., Ke S., Wang Q., Wang H., Shui A., Liu P. Fabrication and characterization of anorthite-based ceramic using mineral raw materials. Ceram. Int., 2012, 38(4): 3227.

[31]

Taskiran M.U., Demirkol N., Capoglu A. A new porcelainised stoneware material based on anorthite. J. Eur. Ceram. Soc., 2005, 25(4): 293.

[32]

Johnson W.A., Mehl R.F. Reaction Kinetics in Processes of Nucleation and Growth, 1939, New York, Association of the Institute of Mechanical Engineers, 416.

[33]

Avrami M. Kinetics of phase change: I. General theory. J. Chem. Phys., 1939, 7(12): 1103.

[34]

Kissinger H.E. Reaction kinetics in differential thermal analysis. Anal. Chem., 1957, 29(11): 1702.

[35]

Ozawa T. Kinetics of non-isothermal crystallization. Polymer, 1971, 12(3): 150.

[36]

Bansal N.P., Doremus R.H. Determination of reaction kinetic parameters from variable-temperature DSC or DTA. J. Therm. Anal., 1984, 29(1): 115.

[37]

Marotta A., Buri A., Branda F. Surface and bulk crystallization in non-isothermal devitrification of glasses. Thermochim. Acta, 1980, 40(3): 397.

[38]

Marotta A., Buri A., Branda F. Nucleation in glass and differential thermal analysis. J. Mater. Sci., 1981, 16(2): 341.

[39]

Marotta A., Saiello S., Branda F., Buri A. Activation energy for the crystallization of glass from DDTA curves. J. Mater. Sci., 1982, 17(17): 105.

[40]

Marseglia E.M. Kinetic theory of crystallization of amorphous materials. J. Non Cryst. Solids, 1980, 41(1): 31.

[41]

Matusita K., Sakka S. Kinetic study of the crystallization of glass by differential scanning calorimetry. Phys. Chem. Glasses, 1974, 20, 81.

[42]

Hu A.M., Li M., Mao D.L. Crystallization of spodumene−diopside in the LAS glass ceramics with CaO and MgO addition. J. Therm. Anal. Calorim., 2007, 90(1): 185.

[43]

Augis J.A., Benett J.E. Calculation of the Avrami parameters for heterogeneous solid state reactions using a modification of the Kissinger method. J. Therm. Anal. Calorim., 1978, 13(2): 283.

AI Summary AI Mindmap
PDF

119

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/