Microstructure and physical properties of steel-ladle purging plug refractory materials
Bin Long , Gui-ying Xu , Buhr Andreas
International Journal of Minerals, Metallurgy, and Materials ›› 2017, Vol. 24 ›› Issue (2) : 186 -193.
Microstructure and physical properties of steel-ladle purging plug refractory materials
Three different castables were prepared as steel-ladle purging-plug refractory materials: corundum-based low-cement castable (C-LCC), corundum–spinel-based low-cement castable (C-S-LCC), and no-cement corundum–spinel castable (C-S-NCC) (hydratable alumina ρ-Al2O3 bonded). The properties of these castables were characterized with regard to water demand/flow ability, cold crushing strength (CCS), cold modulus of rupture (CMoR), permanent linear change (PLC), apparent porosity, and hot modulus of rupture (HMoR). The results show the CCS/CMoR and HMoR of C-LCC and C-S-LCC are greater than those of the castable C-S-NCC. According to the microstructure analysis, the sintering effect and the bonding type of the matrix material differ among the three castables. The calcium hexaluminate (CA6) phase in the matrix of C-LCC enhances the cold and hot mechanical strengths. In the case of C-S-LCC, the CA6 and 2CaO·2MgO·14Al2O3 (C2M2A14) ternary phases generated from the matrix can greatly increase the cold and hot mechanical strengths. In the case of the no-cement castable, sintering becomes difficult, resulting in a lower mechanical strength.
refractory materials / purging plugs / castable / physical properties / microstructure
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
GB/T 2999—2004. Refractory Materials — Determination of Bulk Density of Granular Materials, 2010, Luoyang, Refractories Standardization Committee, 154. |
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
/
| 〈 |
|
〉 |