Microstructure and physical properties of steel-ladle purging plug refractory materials

Bin Long , Gui-ying Xu , Buhr Andreas

International Journal of Minerals, Metallurgy, and Materials ›› 2017, Vol. 24 ›› Issue (2) : 186 -193.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2017, Vol. 24 ›› Issue (2) : 186 -193. DOI: 10.1007/s12613-017-1394-5
Article

Microstructure and physical properties of steel-ladle purging plug refractory materials

Author information +
History +
PDF

Abstract

Three different castables were prepared as steel-ladle purging-plug refractory materials: corundum-based low-cement castable (C-LCC), corundum–spinel-based low-cement castable (C-S-LCC), and no-cement corundum–spinel castable (C-S-NCC) (hydratable alumina ρ-Al2O3 bonded). The properties of these castables were characterized with regard to water demand/flow ability, cold crushing strength (CCS), cold modulus of rupture (CMoR), permanent linear change (PLC), apparent porosity, and hot modulus of rupture (HMoR). The results show the CCS/CMoR and HMoR of C-LCC and C-S-LCC are greater than those of the castable C-S-NCC. According to the microstructure analysis, the sintering effect and the bonding type of the matrix material differ among the three castables. The calcium hexaluminate (CA6) phase in the matrix of C-LCC enhances the cold and hot mechanical strengths. In the case of C-S-LCC, the CA6 and 2CaO·2MgO·14Al2O3 (C2M2A14) ternary phases generated from the matrix can greatly increase the cold and hot mechanical strengths. In the case of the no-cement castable, sintering becomes difficult, resulting in a lower mechanical strength.

Keywords

refractory materials / purging plugs / castable / physical properties / microstructure

Cite this article

Download citation ▾
Bin Long, Gui-ying Xu, Buhr Andreas. Microstructure and physical properties of steel-ladle purging plug refractory materials. International Journal of Minerals, Metallurgy, and Materials, 2017, 24(2): 186-193 DOI:10.1007/s12613-017-1394-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Hiroaki E., Keizou A., Hiroyasu T., Shigeru M., Tuyoshi Y. Development of long-life slit plug material for steel ladle. Proceedings of UNITECR 1999, 1999 308.

[2]

Huang A., Harmuth H., Doletschek M., Vollmann S., Feng X.Z. Toward CFD modeling of slag entrainment in gas stirred ladles. Steel Res. Int., 2015, 86(12): 1447.

[3]

Huang A., Gu H.Z., Zhang M.J., Wang N., Wang T., Zou Y. Mathematical modeling on erosion characteristics of refining ladle lining with application of purging plug. Metall. Mater. Trans. B, 2013, 44(3): 744.

[4]

Chaudhuri S., Stein D. Application of new gas purging systems in ladle metallurgy. Interceram, 1992, 41(5): 313.

[5]

Becker J.U., Berger R., Buhr A., Rasim W.A., Tiemann H. Purging plugs for steel ladles-laboratory and plant results from a BOF steel plant. Proceedings of Unified International Technical Conference on Refractories Fifth Biennial Worldwide Congress Refractories: a Worldwide Technology, 1997 143.

[6]

Egashira H., Aramaki K., Tomimatsu H., Morimoto S., Yoshida T. Development of long-life slit plug material for steel ladle. Taikabutsu Overseas, 1998, 18(4): 85.

[7]

Zhao M. Stirring units for LF/VD ladle in Baosteel. Unified International Technical Conference on Refractories Berlin-Germany, 1999 267.

[8]

Long B., Andreas B., Xu G. Thermodynamic evaluation and properties of refractory materials for steel ladle purging plugs in the system Al2O3–MgO–CaO. Ceram. Int., 2016, 42(10): 11930.

[9]

He X.J., Gao R.X., Lan Z.H., Tian S.X. The research and application of ρ-Al2O3 bonded purging plug. Refractory, 2004, 4, 289.

[10]

Li Y.B., Li N., Peng B., Wu W.H., Li T.Q. The research and application of corundum-spinel based purging plug for steel ladle. Refractory, 2002, 36(2): 95.

[11]

Kockegey-Lorenz R., Büchel G., Buhr A., Aroni J.M., Racher R.P. Improved workability of calcia free alumina binder Alphabond for no-cement castables. Proceedings of 47th International Colloquium on Refractories, 2004 67.

[12]

GB/T 2999—2004. Refractory Materials — Determination of Bulk Density of Granular Materials, 2010, Luoyang, Refractories Standardization Committee, 154.

[13]

Göbbels M., Woermann E., Jung J. The Al-rich part of the system CaO–Al2O3–MgO: Part I. Phase relationships. J. Solid State Chem., 1995, 120(2): 358.

[14]

Simonin F., Olagnon C., Maximilien S., Fantozzi G., Diaz L.A., Torrecillas R. Thermomechanical behavior of high-alumina refractory castables with synthetic spinel additions. J. Am. Ceram. Soc., 2000, 83(10): 2481.

[15]

Fuji K., Furusato I., Takita I. Composition of spinel clinker for teeming ladle casting materials. Taikabutsu Overseas, 1992, 12(1): 4.

[16]

Hart L.D. Alumina Chemicals: Science and Technology Handbook, 1990 176.

[17]

Kriechbaum G.W., Gnauck V., Routschka G. The influence of SiO2 and spinel on the hot properties of high alumina low cement castables. International Colloquium on Refractories, 1994 150.

AI Summary AI Mindmap
PDF

130

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/