Reduction in secondary dendrite arm spacing in cast eutectic Al–Si piston alloys by cerium addition

R. Ahmad , M. B. A. Asmael , N. R. Shahizan , S. Gandouz

International Journal of Minerals, Metallurgy, and Materials ›› 2017, Vol. 24 ›› Issue (1) : 91 -101.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2017, Vol. 24 ›› Issue (1) : 91 -101. DOI: 10.1007/s12613-017-1382-9
Article

Reduction in secondary dendrite arm spacing in cast eutectic Al–Si piston alloys by cerium addition

Author information +
History +
PDF

Abstract

The effects of Ce on the secondary dendrite arm spacing (SDAS) and mechanical behavior of Al–Si–Cu–Mg alloys were investigated. The reduction of SDAS at different Ce concentrations was evaluated in a directional solidification experiment via computer-aided cooling curve thermal analysis (CA‒CCTA). The results showed that 0.1wt%–1.0wt% Ce addition resulted in a rapid solidification time, Δt s, and low solidification temperature, ΔT S, whereas 0.1wt% Ce resulted in a fast solidification time, Δt a–Al, of the α-Al phase. Furthermore, Ce addition refined the SDAS, which was reduced to approximately 36%. The mechanical properties of the alloys with and without Ce were investigated using tensile and hardness tests. The quality index (Q) and ultimate tensile strength of (UTS) Al–Si–Cu–Mg alloys significantly improved with the addition of 0.1wt% Ce. Moreover, the base alloy hardness was improved with increasing Ce concentration.

Keywords

eutectic alloys / aluminum silicon alloys / cerium / microstructure / dendrites / spacing / mechanical properties

Cite this article

Download citation ▾
R. Ahmad, M. B. A. Asmael, N. R. Shahizan, S. Gandouz. Reduction in secondary dendrite arm spacing in cast eutectic Al–Si piston alloys by cerium addition. International Journal of Minerals, Metallurgy, and Materials, 2017, 24(1): 91-101 DOI:10.1007/s12613-017-1382-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Dhiman M., Dwivedi D.K., Sehgal R., Bhat I.K. Effect of iron on microstructure of Al–12Si–1Cu–0.1Mg alloy. Mater. Manuf. Processes, 2008, 23(8): 805.

[2]

Vandersluis E., Lombardi A., Ravindran C., Bois-Brochu A., Chiesa F., MacKay R. Factors influencing thermal conductivity and mechanical properties in 319 Al alloy cylinder heads. Mater. Sci. Eng. A, 2015, 648, 401.

[3]

Sui Y., Wang Q., Wang G., Liu T. Effects of Sr content on the microstructure and mechanical properties of cast Al–12Si–4Cu–2Ni–0.8 Mg alloys. J. Alloys Compd., 2015, 622, 572.

[4]

Farahany S., Ourdjini A. Effect of cooling rate and silicon refiner/modifier on solidification pathways of Al–11.3Si–2Cu–0.4Fe Alloy. Mater. Manuf. Processes, 2013, 28(6): 657.

[5]

Samuel A.M., Garza-Elizondo G.H., Doty H.W., Samuel F.H. Role of modification and melt thermal treatment processes on the microstructure and tensile properties of Al–Si alloys. Mater. Des., 2015, 80, 99.

[6]

Farahany S., Ourdjini A., Bakhsheshi-Rad H.R. Microstructure, mechanical properties and corrosion behavior of Al–Si–Cu–Zn–X (X=Bi, Sb, Sr) die cast alloy. Trans. Nonferrous Met. Soc. China, 2016, 26(1): 28.

[7]

Ibrahim M., Elgallad E., Valtierra S., Doty H., Samuel F. Metallurgical parameters controlling the eutectic silicon charateristics in Be-treated Al–Si–Mg alloys. Materials, 2016, 9(2): 78.

[8]

Osório W.R., Leiva D.R., Peixoto L.C., Garcia L.R., Garcia A. Mechanical properties of Sn–Ag lead-free solder alloys based on the dendritic array and Ag3Sn morphology. J. Alloys Compd., 2013, 562, 194.

[9]

Osório W.R., Peixoto L.C., Canté M.V., Garcia A. Microstructure features affecting mechanical properties and corrosion behavior of a hypoeutectic Al–Ni alloy. Mater. Des., 2010, 31(9): 4485.

[10]

Donelan P. Modelling microstructural and mechanical properties of ferritic ductile cast iron. Mater. Sci. Technol., 2000, 16(3): 261.

[11]

Osório W.R., Peixoto L.C., Moutinho D.J., Gomes L.G., Ferreira I.L., Garcia A. Corrosion resistance of directionally solidified Al–6Cu–1Si and Al–8Cu–3Si alloys castings. Mater. Des., 2011, 32(7): 3832.

[12]

Garcia L.R., Osório W.R., Garcia A. The effect of cooling rate on the dendritic spacing and morphology of Ag3Sn intermetallic particles of a SnAg solder alloy. Mater. Des., 2011, 32(5): 3008.

[13]

Osório W.R., Canté M.V., Brito C., Freitas E.S., Garcia A. Electrochemical behavior of an Al–Fe–Ni alloy affected by nano-sized intermetallic particles. Corrosion, 2014, 71(4): 510.

[14]

Boontein S., Srisukhumbovornchai N., Kajornchaiyakul J., Limmaneevichitr C. Reduction in secondary dendrite arm spacing in cast aluminium alloy A356 by Sb addition. Int. J. Cast Met. Res., 2011, 24(2): 108.

[15]

Pourbahari B., Emamy M. Effects of La intermetallics on the structure and tensile properties of thin section gravity die-cast A357 Al alloy. Mater. Des., 2016, 94, 111.

[16]

Zhi H., Ruan X.M., Yan H. Effects of neodymium addition on microstructure and mechanical properties of near-eutectic Al–12Si alloys. Trans. Nonferrous Met. Soc. China, 2015, 25(12): 3877.

[17]

Li J.H., Wang X.D., Ludwig T.H., Tsunekawa Y., Arnberg L., Jiang J.Z., Schumacher P. Modification of eutectic Si in Al–Si alloys with Eu addition. Acta Mater., 2015, 84, 153.

[18]

Alkahtani S., Elgallad E., Tash M., Samuel A., Samuel F. Effect of rare earth metals on the microstructure of Al–Si based alloys. Materials, 2016, 9(1): 45.

[19]

Ahmad R., Asmael M.B.A. Influence of cerium on microstructure and solidification of eutectic Al–Si piston alloy. Mater. Manuf. Processes, 2016, 31(15): 1948.

[20]

Tsai Y.C., Lee S.L., Lin C.K. Effect of trace Ce addition on the microstructures and mechanical properties of A356 (Al–7Si–0.35Mg) aluminum alloys. J. Chin. Inst. Eng., 2011, 34(5): 609.

[21]

Li Q., Xia T., Lan Y., Zhao W., Fan L., Li P. Effect of rare earth cerium addition on the microstructure and tensile properties of hypereutectic Al–20%Si alloy. J. Alloys Compd., 2013, 562(1): 25.

[22]

Vijeesh V., Ravi M., Narayan Prabhu K. The effect of the addition of strontium and cerium modifiers on microstructure and mechanical properties of hypereutectic Al–Si (LM30) alloy. Mater. Perform. Charact., 2013, 2(1): 296.

[23]

Kores S., Vončina M., Kosec B., Mrvar P., Medved J. Effect of cerium additions on the AlSi17 casting alloy. Mater. Technol., 2010, 44(3): 137.

[24]

Vončina M., Kores S., Mrvar P., Medved J. Solidification and precipitation behaviour in the AlSi9Cu3 alloy with various Ce additions. Mater. Technol., 2011, 45(6): 549.

[25]

Vijeesh V., Prabhu K.N. Computer aided cooling curve analysis and microstructure of cerium added hypereutectic Al–Si (LM29) alloy. Trans. Indian Inst. Met., 2014, 67(4): 541.

[26]

Vijayan V., Narayan K. Prabhu, Effect of chilling and cerium addition on microstructure and cooling curve parameters of Al–14% Si alloy. Can. Metall. Q., 2015, 54(1): 66.

[27]

Jiang W., Fan Z., Dai Y., Li C. Effects of rare earth elements addition on microstructures, tensile properties and fractography of A357 alloy. Mater. Sci. Eng. A, 2014, 597, 237.

[28]

Shi Z.M., Wang Q., Yu Y.T., Zhao G., Zhang R.Y. Microstructure and mechanical properties of Gd-modified A356 aluminum alloys. J. Rare Earths, 2015, 33(9): 1004.

[29]

Sui Y., Wang Q., Liu T., Ye B., Jiang H., Ding W. Influence of Gd content on microstructure and mechanical properties of cast Al–12Si–4Cu–2Ni–0.8 Mg alloys. J. Alloys Compd., 2015, 644, 228.

[30]

Vijeesh V., Prabhu K.N. Hyland M. The effect of cooling rate and cerium melt treatment on thermal analysis parameters and microstructure of hypoeutectic Al–Si alloy. Light Metals 2015, 2015 403.

[31]

Heusler L., Schneider W. Influence of alloying elements on the thermal analysis results of Al–Si cast alloys. J. Light Met, 2002, 2(1): 17.

[32]

Lu L., Nogita K., Dahle A.K. Combining Sr and Na additions in hypoeutectic Al–Si foundry alloys. Mater. Sci. Eng. A, 2005, 399(1-2): 244.

[33]

Asensio-Lozano J., Suarez-Peña B. Effect of the addition of refiners and/or modifiers on the microstructure of die cast Al–12Si alloys. Scripta Mater., 2006, 54(5): 943.

[34]

Niu X.P., Hu B.H., Pinwill I., Li H. Vacuum assisted high pressure die casting of aluminium alloys. J. Mater. Process. Technol., 2000, 105(1-2): 119.

[35]

Zhu M., Jian Z., Yao L., Liu C., Yang G., Zhou Y. Effect of mischmetal modification treatment on the microstructure, tensile properties, and fracture behavior of Al–7.0% Si–0.3% Mg foundry aluminum alloys. J. Mater. Sci., 2011, 46(8): 2685.

[36]

Shabestari S.G., Malekan M. Assessment of the effect of grain refinement on the solidification characteristics of 319 aluminum alloy using thermal analysis. J. Alloys Compd., 2010, 492(1-2): 134.

[37]

Pavlović-Krstić J., Bähr R., Krstić G., Putić S. The effect of mould temperature and cooling conditions on the size of secondary dendrite arm spacing in Al–7Si–3Cu alloy. Metalurgija, 2009, 15(2): 105.

[38]

Djurdjevic M.B., Huber G. Determination of rigidity point/temperature using thermal analysis method and mechanical technique. J. Alloys Compd., 2014, 590, 500.

[39]

Nordin N.A., Farahany S., Bakar T.A.A., Hamzah E., Ourdjini A. Microstructure development, phase reaction characteristics and mechanical properties of a commercial Al–20% Mg2Si–xCe in situ composite solidified at a slow cooling rate. J. Alloys Compd., 2015, 650, 821.

[40]

Langelier B., Esmaeili S. Effects of Ce additions on the age hardening response of Mg–Zn alloys. Mater. Charact., 2015, 101, 1.

[41]

Farahany S., Idris M.H., Ourdjini A., Faris F., Ghandvar H. Evaluation of the effect of grain refiners on the solidification characteristics of an Sr-modified ADC12 die-casting alloy by cooling curve thermal analysis. J. Therm. Anal. Calorim., 2015, 119(3): 1593.

[42]

Tsai Y.C., Chou C.Y., Lee S.L., Lin C.K., Lin J.C., Lim S.W. Effect of trace La addition on the microstructures and mechanical properties of A356 (Al–7Si–0.35 Mg) aluminum alloys. J. Alloys Compd., 2009, 487(1-2): 157.

[43]

Ahmad R., Asmael M.B.A. Influence of lanthanum on solidification, microstructure, and mechanical properties of eutectic Al–Si piston alloy. J. Mater. Eng. Perform., 2016, 25(7): 2799.

[44]

Knuutinen A., Nogita K., McDonald S.D., Dahle A.K. Modification of Al–Si alloys with Ba, Ca, Y and Yb. J. Light Met., 2001, 1(4): 229.

[45]

Gonzalez-Rivera C., Baez J., Chavez R., Garcı́a A., Juarez-Islas J. Quantification of the SiCp content in molten Al–Si/SiCp composites by computer aided thermal analysis. J. Mater. Process. Technol, 2003, 143-144, 860.

[46]

Farahany S., Ourdjini A., Idris M.H., Shabestari S.G. Computer-aided cooling curve thermal analysis of near eutectic Al–Si–Cu–Fe alloy. J. Therm. Anal. Calorim, 2013, 114(2): 705.

[47]

Qiu H., Yan H., Hu Z. Effect of samarium (Sm) addition on the microstructures and mechanical properties of Al–7Si–0.7 Mg alloys. J. Alloys Compd., 2013, 567, 77.

[48]

Malekan M., Shabestari S.G. Effect of grain refinement on the dendrite coherency point during solidification of the A319 aluminum alloy. Metall. Mater. Trans. A, 2009, 40(13): 3196.

[49]

Boileau J.M., Allison J.E. The effect of solidification time and heat treatment on the fatigue properties of a cast 319 aluminum alloy. Metall. Mater. Trans. A, 2003, 34(9): 1807.

[50]

Mackay R.I., Sokolowski J.H. Effect of Si and Cu concentrations and solidification rate on soundness in casting structure in Al–Si–Cu alloys. Int. J. Cast Met. Res., 2010, 23(1): 7.

[51]

Vončina M., Kores S., Mrvar P., Medved J. Effect of Ce on solidification and mechanical properties of A360 alloy. J. Alloys Compd., 2011, 509(27): 7349.

[52]

Hawksworth A., Rainforth W.M., Jones H. Solidification microstructure selection in the Al-rich Al–La, Al–Ce and Al–Nd systems. J. Cryst. Growth, 1999, 197(1-2): 286.

[53]

An G.Y., Liu L.X., Gu G.D. Effect of Ce on the interface stability and dendrite arm spacing of Al–Cu alloys. J. Cryst. Growth, 1987, 83(1): 96.

[54]

Mao F., Yan G., Xuan Z., Cao Z., Wang T. Effect of Eu addition on the microstructures and mechanical properties of A356 aluminum alloys. J. Alloys Compd., 2015, 650, 896.

[55]

Hu Z., Yan H., Rao Y.S. Effects of samarium addition on microstructure and mechanical properties of as-cast Al–Si–Cu alloy. Trans. Nonferrous Met. Soc. China, 2013, 23(11): 3228.

[56]

Xu C., Xiao W., Hanada S., Yamagata H., Ma C. The effect of scandium addition on microstructure and mechanical properties of Al–Si–Mg alloy: a multi-refinement modifier. Mater. Charact., 2015, 110, 160.

[57]

Li Z.H., Yan H. Modification of primary α-Al, eutectic silicon and β-Al5FeSi phases in as-cast AlSi10Cu3 alloys with (La + Yb) addition. J. Rare Earths, 2015, 33(9): 995.

[58]

Samuel A.M., Samuel F.H., Doty H.W. Observations on the formation of β-Al5FeSi phase in 319 type Al–Si alloys. J. Mater. Sci., 1996, 31(20): 5529.

[59]

Zhang M., Meng X., Wu R., Cui C., Wu L. Effect of Ce on microstructures and mechanical properties of as-cast Mg–8Li–1Al alloys. Kovove Mater., 2010, 48(3): 211.

[60]

Ravi M., Pillai U., Pai B., Damodaran A., Dwarakadasa E.S. A study of the influence of mischmetal additions to Al–7Si–0.3 Mg (LM 25/356) alloy. Metall. Mater. Trans. A, 1996, 27(5): 1283.

[61]

Wang Q.G. Microstructural effects on the tensile and fracture behavior of aluminum casting alloys A356/357. Metall. Mater. Trans. A, 2003, 34(12): 2887.

[62]

Drouzy M., Jacob S., Richard M. Interpretation of tensile results by means of quality index and probable yield strength. Int. J. Cast Met. Res., 1980, 5(2): 43.

[63]

Kores S., Vončina M., Kosec B., Medved J. Formation of AlFeSi phase in AlSi12 alloy with Ce addition. Metalurgija, 2012, 51(2): 216.

[64]

Sebaie O. E., Samuel A.M., Samuel F.H., Doty H.W. The effects of mischmetal, cooling rate and heat treatment on the hardness of A319.1, A356.2 and A413.1 Al–Si casting alloys. Mater. Sci. Eng. A, 2008, 486(1-2): 241.

[65]

Nie Z.R., Jin T., Fu J., Xu G., Yang J., Zhou J.X., Zuo T.Y. Research on rare earth in aluminum. Mater. Sci. Forum, 2002, 396-402, 1731.

AI Summary AI Mindmap
PDF

183

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/