Influence of mill scale and rust layer on the corrosion resistance of low-alloy steel in simulated concrete pore solution

Jin-jie Shi , Jing Ming

International Journal of Minerals, Metallurgy, and Materials ›› 2017, Vol. 24 ›› Issue (1) : 64 -74.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2017, Vol. 24 ›› Issue (1) : 64 -74. DOI: 10.1007/s12613-017-1379-4
Article

Influence of mill scale and rust layer on the corrosion resistance of low-alloy steel in simulated concrete pore solution

Author information +
History +
PDF

Abstract

Electrochemical impedance spectroscopy, cyclic potentiodynamic polarization measurements, and scanning electron microscopy in conjunction with energy-dispersive X-ray spectroscopy were used to investigate the influence of mill scale and rust layer on the passivation capability and chloride-induced corrosion behaviors of conventional low-carbon (LC) steel and low-alloy (LA) steel in simulated concrete pore solution. The results show that mill scale exerts different influences on the corrosion resistance of both steels at various electrochemical stages. We propose that the high long-term corrosion resistance of LA steel is mainly achieved through the synergistic effect of a gradually formed compact, adherent and well-distributed Cr-enriched inner rust layer and the physical barrier protection effect of mill scale.

Keywords

steel reinforced concrete / low alloy steel / low carbon steel / steel corrosion / corrosion resistance

Cite this article

Download citation ▾
Jin-jie Shi, Jing Ming. Influence of mill scale and rust layer on the corrosion resistance of low-alloy steel in simulated concrete pore solution. International Journal of Minerals, Metallurgy, and Materials, 2017, 24(1): 64-74 DOI:10.1007/s12613-017-1379-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Vera R., Villarroel M., Carvajal A.M., Vera E., Ortiz C. Corrosion products of reinforcement in concrete in marine and industrial environments. Mater. Chem. Phys., 2009, 114(1): 467.

[2]

Alghamdi S.A., Ahmad S. Service life prediction of RC structures based on correlation between electrochemical and gravimetric reinforcement corrosion rates. Cem. Concr. Compos., 2014, 47, 64.

[3]

Presuel-Moreno F., Scully J.R., Sharp S.R. Literature review of commercially available alloys that have potential as low-cost, corrosion-resistant concrete reinforcement. Corrosion, 2010, 66(8): 086001.

[4]

Zhong J.Y., Sun M., Liu D.B., Li X.G., Liu T.Q. Effects of chromium on the corrosion and electrochemical behaviors of ultra high strength steels. Int. J. Miner. Metall. Mater., 2010, 17(3): 282.

[5]

Zhao Q.H., Liu W., Yang J.W., Zhu Y.C., Zhang B.L., Lu M.X. Corrosion behavior of low alloy steels in a wet–dry acid humid environment. Int. J. Miner. Metall. Mater., 2016, 23(9): 1076.

[6]

Wang S.T., Yang S.W., Gao K.W., He X.L. Corrosion behavior and corrosion products of a low-alloy weathering steel in Qingdao and Wanning. Int. J. Miner. Metall. Mater., 2009, 16(1): 58.

[7]

Tae S.H., Ujiro T. Corrosion resistance of Cr-bearing rebar in simulated concrete pore solutions. ISIJ Int., 2007, 47(9): 1324.

[8]

Singh J.K., Singh D.D.N. The nature of rusts and corrosion characteristics of low alloy and plain carbon steels in three kinds of concrete pore solution with salinity and different pH. Corros. Sci., 2012, 56, 129.

[9]

Shi J.J., Sun W., Jiang J.Y., Zhang Y.M. Influence of chloride concentration and pre-passivation on the pitting corrosion resistance of low-alloy reinforcing steel in simulated concrete pore solution. Constr. Build. Mater., 2016, 111(5): 805.

[10]

Ghods P., Isgor O.B., McRae G.A., Gu G.P. Electrochemical investigation of chloride-induced depassivation of black steel rebar under simulated service conditions. Corros. Sci., 2010, 52(5): 1649.

[11]

Mammoliti L.T., Brown L.C., Hansson C.M., Hope B.B. The influence of surface finish of reinforcing steel and pH of the test solution on the chloride threshold concentration for corrosion initiation in synthetic pore solutions. Cem. Concr. Res., 1996, 26(4): 545.

[12]

Kouřil M., Novák P., Bojko M. Threshold chloride concentration for stainless steels activation in concrete pore solutions. Cem. Concr. Res., 2010, 40(3): 431.

[13]

Mahallati E., Saremi M. An assessment on the mill scale effects on the electrochemical characteristics of steel bars in concrete under DC-polarization. Cem. Concr. Res., 2006, 36(7): 1324.

[14]

Li L., Sagüés A.A. Chloride corrosion threshold of reinforcing steel in alkaline solutions: open-circuit immersion tests. Corrosion, 2001, 57(1): 19.

[15]

Mohammed T.U., Hamada H. Corrosion of steel bars in concrete with various steel surface conditions. ACI Mater. J., 2006, 103(4): 233.

[16]

Ghods P., Isgor O.B., McRae G.A., Li J., Gu G.P. Microscopic investigation of mill scale and its proposed effect on the variability of chloride-induced depassivation of carbon steel rebar. Corros. Sci., 2011, 53(3): 946.

[17]

Pillai R.G., Trejo D. Surface condition effects on critical chloride threshold of steel reinforcement. ACI Mater. J., 2005, 102(2): 103.

[18]

Poursaee A., Hansson C. Reinforcing steel passivation in mortar and pore solution. Cem. Concr. Res., 2007, 37(7): 1127.

[19]

Manera M., Vennesland Bertolini L. Chloride threshold for rebar corrosion in concrete with addition of silica fume. Corros. Sci., 2008, 50(2): 554.

[20]

Demoulin A., Trigance C., Neff D., Foy E., Dillmann P., L’Hostis V. The evolution of the corrosion of iron in hydraulic binders analysed from 46- and 260-year-old buildings. Corros. Sci., 2010, 52(10): 3168.

[21]

Jaffer S.J., Hansson C.M. Chloride-induced corrosion products of steel in cracked-concrete subjected to different loading conditions. Cem. Concr. Res., 2009, 39(2): 116.

[22]

Zhao Y.X., Wu Y.Y., Jin W.L. Distribution of millscale on corroded steel bars and penetration of steel corrosion products in concrete. Corros. Sci., 2013, 66, 160.

[23]

Islam M.A., Bergsma B.P., Hansson C.M. Chloride-induced corrosion behavior of stainless steel and carbon steel reinforcing bars in sound and cracked concrete. Corrosion, 2013, 69(3): 303.

[24]

Zhang F., Pan J.S., Lin C.J. Localized corrosion behaviour of reinforcement steel in simulated concrete pore solution. Corros. Sci., 2009, 51(9): 2130.

[25]

Li L., Sagüés A.A. Chloride corrosion threshold of reinforcing steel in alkaline solutions: effect of specimen size. Corrosion, 2004, 60(2): 195.

[26]

Moser R.D., Singh P.M., Kahn L.F., Kurtis K.E. Chloride-induced corrosion resistance of high-strength stainless steels in simulated alkaline and carbonated concrete pore solutions. Corros. Sci., 2012, 57(4): 241.

[27]

Freire L., Carmezim M.J., Ferreira M.G.S., Montemor M.F. The electrochemical behaviour of stainless steel AISI 304 in alkaline solutions with different pH in the presence of chlorides. Electrochim. Acta, 2011, 56(14): 5280.

[28]

Jamil H.E., Shriri A., Boulif R., Montemor M.F., Ferreira M.G.S. Corrosion behaviour of reinforcing steel exposed to an amino alcohol based corrosion inhibitor. Cem. Concr. Compos., 2005, 27(6): 671.

[29]

Koleva D.A., De Wit J.H.W., Van Breugel K., Lodhi Z.F., Van Westing E. Investigation of corrosion and cathodic protection in reinforced concrete: I. Application of electrochemical techniques. J. Electrochem. Soc., 2007, 154(4): P52.

[30]

Saremi M., Mahallati E. A study on chloride-induced depassivation of mild steel in simulated concrete pore solution. Cem. Concr. Res., 2002, 32(12): 1915.

[31]

Zhang Q.C., Wu J.S., Wang J.J., Zheng W.L., Chen J.G., Li A.B. Corrosion behavior of weathering steel in marine atmosphere. Mater. Chem. Phys., 2003, 77(2): 603.

[32]

Wang S.T., Yang S.W., Gao K.W., Shen X.A., He X.L. Corrosion behavior and variation of apparent mechanical property of a novel low carbon bainitic steel in environment containing chloride ions. Acta Metall. Sin., 2008, 44(9): 1116.

[33]

García-Alonso M.C., González J.A., Miranda J., Escudero M.L., Correia M.J., Salta M., Bennani A. Corrosion behaviour of innovative stainless steels in mortar. Cem. Concr. Res., 2007, 37(11): 1562.

[34]

Qian Y., Ma C., Niu D., Xu J., Li M. Influence of alloyed chromium on the atmospheric corrosion resistance of weathering steels. Corros. Sci., 2013, 74(9): 424.

AI Summary AI Mindmap
PDF

150

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/