Investigations of a nanostructured FeMnSi shape memory alloy produced via severe plastic deformation

Gheorghe Gurau , Carmela Gurau , Vedamanickam Sampath , Leandru Gheorghe Bujoreanu

International Journal of Minerals, Metallurgy, and Materials ›› 2016, Vol. 23 ›› Issue (11) : 1315 -1322.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2016, Vol. 23 ›› Issue (11) : 1315 -1322. DOI: 10.1007/s12613-016-1353-6
Article

Investigations of a nanostructured FeMnSi shape memory alloy produced via severe plastic deformation

Author information +
History +
PDF

Abstract

Low-cost iron-based shape memory alloys (SMAs) show great potential for engineering applications. The developments of new processing techniques have recently enabled the production of nanocrystalline materials with improved properties. These developments have opened avenues for newer applications for SMAs. The influence of severe plastic deformation induced by the high-speed high-pressure torsion (HSHPT) process on the microstructural evolution of an Fe–Mn–Si–Cr alloy was investigated. Transmission electron microscopic analysis of the alloy revealed the existence of nanoscale grains with an abundance of stacking faults. The high density of dislocations characteristic of severe plastic deformation was not observed in this alloy. X-ray diffraction studies revealed the presence of ε-martensite with an HCP crystal structure and γ-phase with an FCC structure.

Keywords

iorn manganese silicon alloys / shape memory effect / nanostructured materials / martensite / plastic deformation

Cite this article

Download citation ▾
Gheorghe Gurau, Carmela Gurau, Vedamanickam Sampath, Leandru Gheorghe Bujoreanu. Investigations of a nanostructured FeMnSi shape memory alloy produced via severe plastic deformation. International Journal of Minerals, Metallurgy, and Materials, 2016, 23(11): 1315-1322 DOI:10.1007/s12613-016-1353-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

San Juan J., M.L. Superelasticity and shape memory nano-scale: size effects on the martensitic transformation. J. Alloys Compd., 2013, 577, 25.

[2]

Cladera A., Weber B., Leinenbach C., Czaderski C., Shahverdi M., Motavalli M. Iron-based shape memory alloys for civil engineering structures: an overview. Constr. Build. Mater., 2014, 63, 281.

[3]

Wang X.B., Verlinden B., van Humbeeck J. Effect of post-deformation annealing on the R-phase transformation temperatures in NiTi shape memory alloys. Intermetallics, 2015, 62, 43.

[4]

Verbeken K., Van Caenegem N., Verhaege M. Quantification of the amount of ε martensite in a Fe-Mn-Si-Cr-Ni shape memory alloy by means of electron backscatter diffraction. Mater. Sci. Eng. A, 2008, 481-482, 471.

[5]

Zhang W., Jiang L.Z., Li N., Wen Y.H. Improvement of shape memory effect in an Fe-Mn-Si-Cr-Ni alloy fabricated by equal channel angular pressing. J. Mater. Process. Technol., 2008, 208(1-3): 130.

[6]

Sato A., Chishima E., Soma K., Mon T. Shape memory effect in γ → ε transformation in Fe-30Mn-1Si alloy single crystals. Acta Metall., 1982, 30(6): 77.

[7]

Sawaguchi T., Nikulin I., Ogawa K., Sekido K., Takamori S., Maruyama T., Chiba Y., Kushibe A., Inoue Y., Tsuzaki K. Design Fe-Mn-Si alloys with improved low-cycle fatigue lives. Scripta Mater., 2015, 99, 49.

[8]

Wen Y.H., Zhang W., Li N., Peng H.B., Xiong L.R. Principle and realization of improving shape memory effect in Fe-Mn-Si-Cr-Ni alloy through aligned precipitations of second-phase particles. Acta Mater., 2007, 55(19): 6526.

[9]

Yang J.H., Chen H., Wayman C.M. Development of Fe-based shape memory alloys associated with face-centered cubic-hexagonal close-packed martensitic transformations: Part I. shape memory behavior. Metall. Trans. A, 1992, 23(5): 1431.

[10]

Maji B.C., Krishnan M., Rama Rao V.V. The microstructure of an Fe-Mn-Si-Cr-Ni stainless steel shape memory alloy. Metall. Mater. Trans. A, 2003, 34(5): 1029.

[11]

Kreitchberg A., Brailovski V., Prokoshkin S., Gunderov D., Khomutov M., Inaekyan K. Effect of the grain/subgrain size on the strain-rate sensitivity and deformability of Ti-50at%Ni alloy. Mater. Sci. Eng. A, 2015, 622, 21.

[12]

Li Y., Li J.Y., Liu M., Ren Y.Y., Chen F., Yao G.C., Mei Q.S. Evolution of microstructure and property of NiTi alloy induced by cold rolling. J. Alloys Compd., 2015, 653, 156.

[13]

Tsuchiya K., Inuzuka M., Tomus D., Hosokawa A., Nakayama H., Morii K., Todaka Y., Umemoto M. Martensitic transformation in nanostructured TiNi shape memory alloy formed via severe plastic deformation. Mater. Sci. Eng. A, 2006, 438-440, 643.

[14]

Hu T., Chen L., Wu S.L., Chu C.L., Wang L.M., Yeung K.W.K., Chu P.K. Graded phase structure in the surface layer of NiTi alloy processed by surface severe plastic deformation. Scripta Mater., 2011, 64, 1011.

[15]

Jiang S.Y., Zhang Y.Q., Zhao L.H., Zheng Y.F. Influence of annealing on NiTi shape memory alloy subjected to severe plastic deformation. Intermetallics, 2013, 32, 344.

[16]

Jiang S.Y., Hu L., Zhao Y., Zhang Y.Q., Liang Y.L. Multiscale investigation of inhomogeneous plastic deformation of NiTi shape memory alloy based on local canning compression. Mater. Sci. Eng. A, 2013, 569, 117.

[17]

Jiang S.Y., Hu L., Zhang Y.Q., Liang Y.L. Nanocrystallization and amorphization of NiTi shape memory alloy under severe plastic deformation based on local canning compression. J. Non Cryst. Solids, 2013, 367, 23.

[18]

Sato A., Maruya T., Morishita M., Kumai S., Inoue A. Strenghtening of Fe-Mn-Si based shape memory alloys by grain size refinement. Mater. Sci. Forum, 2000, 327-328, 223.

[19]

Gurau G., Gurau C., Potecasu O., Alexandru P., Bujoreanu L.G. Novel high-speed high pressure torsion technology for obtaining Fe-Mn-Si-Cr shape memory alloy active elements. J. Mater. Eng. Perform., 2014, 23, 2396.

[20]

Bujoreanu L.G., Comaneci R.I., Gurau G., Lohan N.M., Suru M.G., Pricop B., Goanta V., Musat V., Istrate B., Mihalache E. Thermomechanical training effects of multifunctional modules processed by high-speed high pressure torsion. Indian J. Eng. Mater. S, 2015, 22(4): 367.

[21]

Zhilyaev A.P., Langdon T.G. Using high-pressure torsion for metal processing: Fundamentals and applications. Prog. Mater. Sci., 2008, 53(6): 893.

[22]

Bujoreanu L.G., Goanta V., Cimpoesu N., Gurau C., Suru M.G., Mihalache E., Gurau G. Hardness-gradient reversion in FeMnSiCr shape memory alloy modules produced by high-speed high pressure torsion. MATEC Web of Conferences, 2015, 33, 04001.

[23]

Gurau G., Braz Fernandes F.M., Gurau C., Mahesh K.K., Silva R.J.C. Hih pressure torsion (HPT) applied on Cu-Al-Ni shape memory alloy. Metalurgia, 2011, 63(3): 5.

[24]

Mahesh K.K., Braz Fernandes F.M., Gurau G. Stability of thermal-induced phase transformations in the severely deformed equiatomic Ni-Ti alloys. J. Mater. Sci., 2012, 47(16): 6005.

[25]

Kajiwara S. Characteristic Features of shape memory effect and related transformation behavior in Fe-based alloys. Mater. Sci. Eng. A, 1999, 273–275, 67.

[26]

Sawaguchi T., Bujoreanu L.G., Kikuchi T., Ogawa K., Koyama M., Murakami M. Mechanism of reversible transformation-induced plasticity of Fe-Mn-Si shape memory alloys. Scripta Mater., 2008, 59(8): 826.

[27]

Vafaei R., Toroghinejad M.R., Pippan R. Evaluation of mechanical behavior of nano-grained 2024 Al alloy during high pressure torsion (HPT) process at various temperatures. Mater. Sci. Eng. A, 2012, 536, 73.

[28]

Kockar B., Karaman I., Kulkarni A., Chumlyakov Y., Kireeva I.V. Effect of severe ausforming via equal channel angular extrusion on the shape memory response of a NiTi alloy. J. Nucl. Mater., 2007, 361(2-3): 298.

[29]

Evirgen A., Karaman I., Santamarta R., Pons J., Noebe R.D. Microstructural characterization and shape memory characteristics of the Ni50.3Ti34.7Hf15 shape memory alloy. Acta Mater., 2015, 83, 48.

AI Summary AI Mindmap
PDF

168

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/