Effects of chloride ion concentration and pH values on the corrosion behavior of Cr12Ni3Co12Mo4W ultra-high-strength martensitic stainless steel

Hui-yan Li , Chao-fang Dong , Kui Xiao , Xiao-gang Li , Ping Zhong

International Journal of Minerals, Metallurgy, and Materials ›› 2016, Vol. 23 ›› Issue (11) : 1286 -1293.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2016, Vol. 23 ›› Issue (11) : 1286 -1293. DOI: 10.1007/s12613-016-1350-9
Article

Effects of chloride ion concentration and pH values on the corrosion behavior of Cr12Ni3Co12Mo4W ultra-high-strength martensitic stainless steel

Author information +
History +
PDF

Abstract

The effects of Cl ion concentration and pH values on the corrosion behavior of Cr12Ni3Co12Mo4W ultra-high-strength martensitic stainless steel (UHSMSS) were investigated by a series of electrochemical tests combined with observations by stereology microscopy and scanning electron microscopy. A critical Cl ion concentration was found to exist (approximately 0.1wt%), above which pitting occurred. The pitting potential decreased with increasing Cl ion concentration. A UHSMSS specimen tempered at 600°C exhibited a better pitting corrosion resistance than the one tempered at 400°C. The corrosion current density and passive current density of the UHSMSS tempered at 600°C decreased with increasing pH values of the corrosion solution. The pits developed a shallower dish geometry with increasing polarization potential. A lacy cover on the pits of the UHSMSS tempered at 400°C accelerated pitting, whereas corrosion products deposited in the pits of the UHSMSS tempered at 600°C hindered pitting.

Keywords

martensitic stainless steel / steel corrosion / chloride ions / pitting / potential

Cite this article

Download citation ▾
Hui-yan Li, Chao-fang Dong, Kui Xiao, Xiao-gang Li, Ping Zhong. Effects of chloride ion concentration and pH values on the corrosion behavior of Cr12Ni3Co12Mo4W ultra-high-strength martensitic stainless steel. International Journal of Minerals, Metallurgy, and Materials, 2016, 23(11): 1286-1293 DOI:10.1007/s12613-016-1350-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Krawiec H., Vignal V., Heintz O., Oltra R., Finot E., Olive J.M. Local electrochemical studies after heat treatment of stainless steel: role of induced metallurgical and surface modifications on pitting triggering. Metall. Mater. Trans. A, 2004, 35(11): 3515.

[2]

Marcelin S., Pébère N., Régnier S. Electrochemical characterisation of a martensitic stainless steel in a neutral chloride solution. Electrochim. Acta, 2013, 87, 32.

[3]

Bojack A., Zhao L., Morris P.F., Sietsma J. In-situ determination of austenite and martensite formation in 13Cr6Ni2Mo supermartensitic stainless steel. Mater. Charact., 2012, 71, 77.

[4]

Li C.X., Bell T. Corrosion properties of plasma nitrided AISI 410 martensitic stainless steel in 3.5% NaCl and 1% HCl aqueous solutions. Corros. Sci., 2006, 48(8): 2036.

[5]

Kim S.K., Yoo J.S., Priest J.M., Fewell M.P. Characteristics of martensitic stainless steel nitrided in a low-pressure RF plasma. Surf. Coat. Technol., 2003, 163-164, 380.

[6]

Sun M., Xiao K., Dong C.F., Li X.G., Zhong P. Effect of stress on electrochemical characteristics of pre-cracked ultrahigh strength stainless steel in acid sodium sulphate solution. Corros. Sci., 2014, 89, 137.

[7]

Sun M., Xiao K., Dong C.F., Li X.G., Zhong P. Effect of pH on semiconducting property of passive film formed on ultra- high-strength corrosion-resistant steel in sulfuric acid solution. Metall. Mater. Trans. A, 2013, 44(10): 4709.

[8]

Vignal V., Delrue O., Heintz O., Peultier J. Influence of the passive film properties and residual stresses on the micro- electrochemical behavior of duplex stainless steels. Electrochim. Acta, 2010, 55(23): 7118.

[9]

Li X.F., Zhang J., Ma M.M., Song X.L. Effect of shot peening on hydrogen embrittlement of high strength steel. Int. J. Miner. Metall. Mater., 2016, 23(6): 667.

[10]

Petit J., Sarrazin-Baudoux C., Lorenzi F. Fatigue crack propagation in thin wires of ultra high strength steels. Procedia Eng., 2010, 2(1): 2317.

[11]

Figueroa D., Robinson M.J. Hydrogen transport and embrittlement in 300M and AerMet100 ultra high strength steels. Corros. Sci., 2010, 52(5): 1593.

[12]

Serdar M., Bjegovic D. Long-term corrosion behaviour of stainless reinforcing steel in mortar exposed to chloride environment. Corros. Sci., 2013, 69, 149.

[13]

Zhang Y.C., Urquidi-Macdonald M., Engelhardt G.R., Macdonald D.D. Development of localized corrosion damage on low pressure turbine disks and blades: I. Passivity. Electrochim. Acta, 2012, 69, 1.

[14]

Meng G.Z., Li Y., Shao Y.W., Zhang T., Wang Y.Q., Wang F.H. Effect of Cl- on the properties of the passive films formed on 316L stainless steel in acidic solution. J. Mater. Sci. Technol., 2014, 30(3): 253.

[15]

Han X.C., Li J., Zhao K.Y., Zhang W., Su J. Effect of chloride on semiconducting properties of passive films formed on supermartensitic stainless steel in NaHCO3 solution. J. Iron Steel Res. Int., 2013, 20(5): 74.

[16]

Hu Y.B., Dong C.F., Sun M., Xiao K., Zhong P., Li X.G. Effects of solution pH and Cl- on electrochemical behaviour of an Aermet100 ultra-high strength steel in acidic environments. Corros. Sci., 2011, 53(12): 4159.

[17]

Liu C.T., Wu J.K. Influence of pH on the passivation behavior of 254SMO stainless steel in 3.5% NaCl solution. Corros. Sci., 2007, 49(5): 2198.

[18]

lves M.B., Lu Y.C., Luo J.L. Cathodic reactions involved in metallic corrosion in chlorinated saline environments. Corros. Sci., 1991, 32(1): 91.

[19]

Lorenz W.J., Mansfeld F. Determination of corrosion rates by electrochemical DC and AC methods. Corros. Sci., 1981, 21(9-10): 647.

[20]

Kang D.H., Lee J.K., Kim T.W. Corrosion fatigue crack propagation of high-strength steel HSB800 in a seawater environment. Procedia Eng., 2011, 10, 1170.

[21]

Zhang Y.C., Macdonald D.D., Urquidi-Macdonald M., Engelhardt G.R., Dooley R.B. Passivity breakdown on AISI Type 403 stainless steel in chloride-containing borate buffer solution. Corros. Sci., 2006, 48(11): 3812.

AI Summary AI Mindmap
PDF

120

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/