Alkaline pretreatment for chlorine removal from high-chlorine rhodochrosite

Xing-ran Zhang , Zuo-hua Liu , Wen-sheng Li , Ya-ya Cheng , Jun Du , Chang-yuan Tao

International Journal of Minerals, Metallurgy, and Materials ›› 2016, Vol. 23 ›› Issue (11) : 1252 -1257.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2016, Vol. 23 ›› Issue (11) : 1252 -1257. DOI: 10.1007/s12613-016-1346-5
Article

Alkaline pretreatment for chlorine removal from high-chlorine rhodochrosite

Author information +
History +
PDF

Abstract

Chloride in manganese ore adversely affects mineral extraction. The mechanisms and the factors that influence an alkali pretreatment to removal chlorine from manganese ore were explored to eliminate hazards posed by chlorine during the electrolysis of manganese. The results showed that sodium carbonate, when used as an alkaline additive, promoted the dissolution of insoluble chloride, enhanced the migration of chloride ions, and effectively stabilized Mn2+. The optimal conditions were a sodium carbonate concentration of 0.45 mol·L−1, a liquid-solid ratio of 5:1 mL·g−1, a reaction time of 1 h, and a temperature of 25°C. The chlorine removal efficiency was greater than 95%, and the ore grade (Mn) was increased by 2.7%.

Keywords

manganese ore treatment / rhodochrosite / sodium carbonation / pretreatment / dechlorination

Cite this article

Download citation ▾
Xing-ran Zhang, Zuo-hua Liu, Wen-sheng Li, Ya-ya Cheng, Jun Du, Chang-yuan Tao. Alkaline pretreatment for chlorine removal from high-chlorine rhodochrosite. International Journal of Minerals, Metallurgy, and Materials, 2016, 23(11): 1252-1257 DOI:10.1007/s12613-016-1346-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Díaz-Arista P., Ortiz Z.I., Ruiz H., Ortega R., Meas Y., Trejo G. Electrodeposition and characterization of Zn–Mn alloy coatings obtained from a chloride-based acidic bath containing ammonium thiocyanate as an additive. Surf. Coat. Technol., 2009, 203(9): 1167.

[2]

Duan N., Dan Z.G., Wang F., Pan C.X., Zhou C.B., Jiang L.H. Electrolytic manganese metal industry experience based China’s new model for cleaner production promotion. J. Clean. Prod., 2011, 19(17-18): 2082.

[3]

Zhang Y.B., You Z.X., Li G.H., Jiang T. Manganese extraction by sulfur-based reduction roasting-acid leaching from low-grade manganese oxide ores. Hydrometallurgy, 2013, 133, 126.

[4]

Fan X., Xi S.Y., Sun D.G., Liu Z.H., Du J., Tao C.Y. Mn–Se interactions at the cathode interface during the electrolytic- manganese process. Hydrometallurgy, 2012, 127-128, 24.

[5]

Hagelstein K. Globally sustainable manganese metal production and use. J. Environ. Manage., 2009, 90(12): 3736.

[6]

Sahoo R.N., Naik P.K., Das S.C. Leaching of manganese from low-grade manganese ore using oxalic acid as reductant in sulphuric acid solution. Hydrometallurgy, 2001, 62(3): 157.

[7]

Tao C.Y., Fei S.S., Liu Z.H., Du J., Fan X., Li M., Chen Y. Advance on electrolytic manganese metal ammonium-free process. China’s Manganese Ind., 2011, 29(3): 1.

[8]

Azizi D., Shafaei S.Z., Noaparast M., Abdollahi H. Modeling and optimization of low-grade Mn bearing ore leaching using response surface methodology and central composite rotatable design. Trans. Nonferrous Met. Soc. China, 2012, 22(9): 2295.

[9]

Du J., Liu X.B., Liu Z.H., Tao C.Y., Sun D.G. Progress on the leaching and purifying technology of rhodochrosite. China’s Manganese Ind., 2008, 26(2): 15.

[10]

Kameda T., Yoshioka T., Mitsuhashi T., Uchida M., Okuwaki A. The simultaneous removal of calcium and chloride ions from calcium chloride solution using magnesium–aluminum oxide. Water Res., 2003, 37(16): 4045.

[11]

Kameda T., Yoshioka T., Hoshi T., Uchida M., Okuwaki A. The removal of chloride from solutions with various cations using magnesium–aluminum oxide. Sep. Purif. Technol., 2005, 42(1): 25.

[12]

Kameda T., Yoshioka T., Watanabe K., Uchida M., Okuwaki A. Dehydrochlorination and recovery of hydrochloric acid by thermal treatment of a chloride ion-intercalated hydrotalcite-like compound. Appl. Clay Sci., 2007, 37(1-2): 215.

[13]

Bhindi A.K., Chiswell B. Method based on Chelex-100 ion-exchange resin for the removal of chlorine interference in the determination of chlorite ion. Anal. Chim. Acta, 1992, 265(1): 117.

[14]

Chabani M., Bensmaili A. Kinetic modelling of the retention of nitrates by Amberlite IRA 410. Desalination, 2005, 185(1-3): 509.

[15]

Carmona M., Pérez A., de Lucas A., Rodríguez L., Rodriguez J.F. Removal of chloride ions from an industrial polyethylenimine flocculent shifting it into an adhesive promoter using the anion exchange resin Amberlite IRA-420. React. Funct. Polym., 2008, 68(8): 1218.

[16]

Nam P., Kapila S., Liu Q.H., Tumiatti W., Porciani A., Flanigan V. Solvent extraction and tandem dechlorination for decontamination of soil. Chemosphere, 2001, 43(4-7): 485.

[17]

Wu X.L., Liu Z.Q., Liu X. Chloride ion removal from zinc sulfate aqueous solution by electrochemical method. Hydrometallurgy, 2013, 134-135, 62.

[18]

Chmielarz A., Gnot W. Conversion of zinc chloride to zinc sulphate by electrodialysis: a new concept for solving the chloride ion problem in zinc hydrometallurgy. Hydrometallurgy, 2001, 61(1): 21.

[19]

Chen W.S., Shen Y.H., Tsai M.S., Chang F.C. Removal of chloride from electric arc furnace dust. J. Hazard. Mater., 2011, 190(1-3): 639.

AI Summary AI Mindmap
PDF

230

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/