Hydration kinetics of cementitious materials composed of red mud and coal gangue

Na Zhang , Hong-xu Li , Xiao-ming Liu

International Journal of Minerals, Metallurgy, and Materials ›› 2016, Vol. 23 ›› Issue (10) : 1215 -1224.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2016, Vol. 23 ›› Issue (10) : 1215 -1224. DOI: 10.1007/s12613-016-1341-x
Article

Hydration kinetics of cementitious materials composed of red mud and coal gangue

Author information +
History +
PDF

Abstract

To elucidate the intrinsic reaction mechanism of cementitious materials composed of red mud and coal gangue (RGC), the hydration kinetics of these cementitious materials at 20°C was investigated on the basis of the Krstulović–Dabić model. An isothermal calorimeter was used to characterize the hydration heat evolution. The results show that the hydration of RGC is controlled by the processes of nucleation and crystal growth (NG), interaction at phase boundaries (I), and diffusion (D) in order, and the pozzolanic reactions of slag and compound-activated red mud–coal gangue are mainly controlled by the I process. Slag accelerates the clinker hydration during NG process, whereas the compound-activated red mud–coal gangue retards the hydration of RGC and the time required for I process increases with increasing dosage of red mud–coal gangue in RGC.

Keywords

red mud / coal gangue / cementitious materials / hydration / kinetics

Cite this article

Download citation ▾
Na Zhang, Hong-xu Li, Xiao-ming Liu. Hydration kinetics of cementitious materials composed of red mud and coal gangue. International Journal of Minerals, Metallurgy, and Materials, 2016, 23(10): 1215-1224 DOI:10.1007/s12613-016-1341-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Power G., Gräfe M., Klauber C. Bauxite residue issues: I. Current management, disposal and storage practices. Hydrometallurgy, 2011, 108(1-2): 33.

[2]

Liu Z.B., Li H.X. Metallurgical process for valuable elements recovery from red mud: a review. Hydrometallurgy, 2015, 155, 29.

[3]

Jayasankar K., Ray P.K., Chaubey A.K., Padhi A., Satapathy B.K., Mukherjee P.S. Production of pig iron from red mud waste fines using thermal plasma technology. Int. J. Miner. Metall. Mater., 2012, 19(8): 679.

[4]

Zhu X.F., Zhang T.A., Wang Y.X., G.Z., Zhang W.G. Recovery of alkali and alumina from Bayer red mud by the calcification–carbonation method. Int. J. Miner. Metall. Mater., 2016, 23(3): 257.

[5]

Song X.Y., Gong C.C., Li D.X. Study on structural characteristic and mechanical property of coal gangue in activation process. J. Chin. Ceram. Soc., 2004, 32(3): 358.

[6]

Zhang J.X., Sun H.H., Sun Y.M., Zhang N. Correlation between 29Si polymerization and cementitious activity of coal gangue. J. Zhejiang Univ. Sci. A, 2009, 10(9): 1334.

[7]

Li D.X., Song X.Y., Gong C.C., Pan Z.H. Research on cementitious behavior and mechanism of pozzolanic cement with coal gangue. Cem. Concr. Res., 2006, 36(9): 1752.

[8]

Li C., Wan J.H., Sun H.H., Li L.T. Investigation on the activation of coal gangue by a new compound method. J. Hazard. Mater., 2010, 179(1-3): 515.

[9]

Zhang N., Sun H.H., Zhang J.X., Wan J.H. Effect of multiplex thermal activation on cementitious behavior of red mud–coal gangue. Rare Met. Mater. Eng., 2009, 38(2): 663.

[10]

Liu X.M., Zhang N., Sun H.H., Li Y., Cang D.Q. Effect of multiplex thermal activation on microstructure of red mud-coal gangue. Rare Met. Mater. Eng., 2013, 42(1): 538.

[11]

Zhang N., Liu X.M., Sun H.H., Li L.T. Pozzolanic behaviour of compound-activated red mud–coal gangue mixture. Cem. Concr. Res., 2011, 41(3): 270.

[12]

Zhang N., Sun H.H., Liu X.M., Zhang J.X. Early-age characteristics of red mud–coal gangue cementitious material. J. Hazard. Mater., 2009, 167(1-3): 927.

[13]

Zhang N., Liu X.M., Sun H.H. Hydration characteristics of intermediate-calcium based cementitious materials from red mud and coal gangue. Chin. J. Mater. Res., 2014, 28(5): 325.

[14]

Liu X.M., Zhang N., Yao Y., Sun H.H., Feng H. Micro-structural characterization of the hydration products of bauxite-calcination-method red mud–coal gangue based cementitious materials. J. Hazard. Mater., 2013, 262, 428.

[15]

Zhang N., Liu X.M., Sun H.H. XPS analysis on hydration process of red mud–coal gangue based cementitious materials. Met. Mine, 2014, 3, 171.

[16]

Tydlitát V., Matas T., Černý R. Effect of w/c and temperature on the early-stage hydration heat development in Portland-limestone cement. Constr. Build. Mater., 2014, 50(2): 140.

[17]

Han F.H., Liu R.G., Wang D.M., Yan P.Y. Characteristics of the hydration heat evolution of composite binder at different hydrating temperature. Thermochim. Acta, 2014, 586(8): 52.

[18]

Han F.H., Zhang Z.Q., Wang D.M., Yan P.Y. Hydration heat evolution and kinetics of blended cement containing steel slag at different temperatures. Thermochim. Acta, 2015, 605, 43.

[19]

Han F.H., Zhang Z.Q., Wang D.M., Yan P.Y. Hydration kinetics of composite binder containing slag at different temperature. J. Therm. Anal. Calorim., 2015, 121(2): 815.

[20]

Narmluk M., Nawa T. Effect of fly ash on the kinetics of Portland cement hydration at different curing temperatures. Cem. Concr. Res., 2011, 41(6): 579.

[21]

Krstulović R., Dabić P. A conceptual model of the cement hydration process. Cem. Concr. Res., 2000, 30(5): 693.

[22]

Yan P.Y., Zheng F. Kinetics model for the hydration mechanism of cementitious materials. J. Chin. Ceram. Soc., 2006, 34(5): 555.

[23]

Han F.H., Wang D.M., Yan P.Y. Hydration kinetics of composite binder containing different content of slag or fly ash. J. Chin. Ceram. Soc., 2014, 42(5): 613.

[24]

Zhang N., Li H.X., Zhao Y.Z., Liu X.M. Hydration characteristics and environmental friendly performance of a cementitious material composed of calcium silicate slag. J. Hazard. Mater., 2016, 306, 67.

[25]

Xu B., Pu X.C. Study on the relationship between the phase separation of slag glass and the latent hydraulic activity of BFS. J. Chin. Ceram. Soc., 1997, 25(6): 729.

[26]

Li Y., Sun H.H., Liu X.M., Cui Z.D. Effect of phase separation structure on cementitious reactivity of blast furnace slag. Sci. China Ser. E, 2009, 52(9): 2695.

[27]

Li Y., Liu X.M., Sun H.H., Cang D.Q. Mechanism of phase separation in BFS (blast furnace slag) glass phase. Sci. China Technol. Sci., 2011, 54(1): 105.

AI Summary AI Mindmap
PDF

132

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/