Nanostructured multilayer thin films of multiwalled carbon nanotubes/gold nanoparticles/glutathione for the electrochemical detection of dopamine

Ekarat Detsri , Sirilak Rujipornsakul , Tanapong Treetasayoot , Pawarit Siriwattanamethanon

International Journal of Minerals, Metallurgy, and Materials ›› 2016, Vol. 23 ›› Issue (10) : 1204 -1214.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2016, Vol. 23 ›› Issue (10) : 1204 -1214. DOI: 10.1007/s12613-016-1340-y
Article

Nanostructured multilayer thin films of multiwalled carbon nanotubes/gold nanoparticles/glutathione for the electrochemical detection of dopamine

Author information +
History +
PDF

Abstract

In the present study, multiwalled carbon nanotubes (MWCNTs), gold nanoparticles (AuNPs), and glutathione (GSH) were used to fabricate multilayer nanoscale thin films. The composite thin films were fabricated by layer-by-layer technique as the films were constructed by the alternate deposition of cationic and anionic polyelectrolytes. The MWCNTs were modified via a noncovalent surface modification method using poly(diallydimethylammonium chloride) to form a cationic polyelectrolyte. An anionic polyelectrolyte was prepared by the chemical reduction of HAuCl4 using sodium citrate as both the stabilizing and reducing agent to form anionic AuNPs. GSH was used as an electrocatalyst toward the electro-oxidation of dopamine. The constructed composite electrode exhibits excellent electrocatalytic activity toward dopamine with a short response time and a wide linear range from 1 to 100 μmol/L. The limits of detection and quantitation of dopamine are (0.316 ± 0.081) μmol/L and (1.054 ± 0.081) μmol/L, respectively. The method is satisfactorily applied for the determination of dopamine in plasma and urine samples to obtain the recovery in the range from 97.90% to 105.00%.

Keywords

multiwalled carbon nanotubes / gold / nanoparticles / glutathione / dopamine

Cite this article

Download citation ▾
Ekarat Detsri, Sirilak Rujipornsakul, Tanapong Treetasayoot, Pawarit Siriwattanamethanon. Nanostructured multilayer thin films of multiwalled carbon nanotubes/gold nanoparticles/glutathione for the electrochemical detection of dopamine. International Journal of Minerals, Metallurgy, and Materials, 2016, 23(10): 1204-1214 DOI:10.1007/s12613-016-1340-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Liu A.H., Honma I., Zhou H.S. Amperometric biosensor based on tyrosinase-conjugated polysaccharide hybrid film: Selective determination of nanomolar neurotransmitters metabolite of 3,4-dihydroxyphenylacetic acid (DOPAC) in biological fluid. Biosens. Bioelectron., 2005, 21(5): 809.

[2]

Mo J.W., Ogorevc B. Simultaneous measurement of dopamine and ascorbate at their physiological levels using voltammetric microprobe based on overoxidized poly(1,2-phenylenediamine)- coated carbon fiber. Anal. Chem., 2001, 73(6): 1196.

[3]

Dayton M.A., Ewing A.G., Wightman R.M. Response of microvoltammetric electrodes to homogeneous catalytic and slow heterogeneous charge-transfer reactions. Anal. Chem., 1980, 52(14): 2392.

[4]

Huang K.J., Jing Q.S., Wu Z.W., Wang L., Wei C.Y. Enhanced sensing of dopamine in the present of ascorbic acid based on graphene/poly(p-aminobenzoic acid) composite film. Colloids Surf. B, 2011, 88(1): 310.

[5]

Liu X.G., Peng Y.H., Qu X.J., Ai S.Y., Han R.X., Zhu X.B. Multi-walled carbon nanotube-chitosan/poly(amidoamine)/ DNA nanocomposite modified gold electrode for determination of dopamine and uric acid under coexistence of ascorbic acid. J. Electroanal. Chem., 2011, 654(1-2): 72.

[6]

Sainio S., Palomäki T., Rhode S., Kauppila M., Pitkänen O., Selkälä T., Toth G., Moram M., Kordas K., Koskinen J., Laurila T. Carbon nanotube (CNT) forest grown on diamond- like carbon (DLC) thin films significantly improves electrochemical sensitivity and selectivity towards dopamine. Sens. Actuators, B, 2015, 211, 177.

[7]

Chu W.Y., Zhou Q., Li S.S., Zhao W., Li N., Zheng J.W. Oxidation and sensing of ascorbic acid and dopamine on self-assembled gold nanoparticles incorporated within polyaniline film. Appl. Surf. Sci., 2015, 353, 425.

[8]

Vinoth V., Wu J.J., Asiri A.M., Anandan S. Simultaneous detection of dopamine and ascorbic acid using silicate network interlinked gold nanoparticles and multi-walled carbon nanotubes. Sens. Actuators B, 2015, 210, 731.

[9]

Leng Y.M., Xie K., Ye L., Li G.Q., Lu Z.W., He J.B. Gold-nanoparticle-based colorimetric array for detection of dopamine in urine and serum. Talanta, 2015, 139, 89.

[10]

Yang L., Liu S., Zhang Q., Li F. Simultaneous electrochemical determination of dopamine and ascorbic acid using AuNPs@polyaniline core–shell nanocomposites modified electrode. Talanta, 2012, 89, 136.

[11]

Stoyanova A., Ivanov S., Tsakova V., Bund A. Au nanoparticle- polyaniline nanocomposite layers obtained through layer-by-layer adsorption for the simultaneous determination of dopamine and uric acid. Electrochim. Acta, 2011, 56(10): 3693.

[12]

Anu Prathap M.U., Srivastava R. Tailoring properties of polyaniline for simultaneous determination of a quaternary mixture of ascorbic acid, dopamine, uric acid, and tryptophan. Sens. Actuators B, 2013, 177, 239.

[13]

Iijima S. Helical microtubules of graphitic carbon. Nature, 1991, 354, 56.

[14]

Suarasan S., Focsan M., Soritau O., Maniu D., Astilean S. One-pot, green synthesis of gold nanoparticles by gelatin and investigation of their biological effects on Osteoblast cells. Colloids Surf. B, 2015, 132, 122.

[15]

Trigueiro J.P.C., Silva G.G., Pereira F.V., Lavall R.L. Layer-by-layer assembled films of multi-walled carbon nanotubes with chitosan and cellulose nanocrystals. J. Colloid Interface Sci., 2014, 432, 214.

[16]

Sedghi R., Pezeshkian Z. Fabrication of non-enzymatic glucose sensor based on nanocomposite of MWCNTs-COOH-poly (2-aminothiophenol)-Au NPs. Sens. Actuators B, 2015, 219, 119.

[17]

Detsri E., Dubas S.T. Layer-by-layer deposition of cationic and anionic carbon nanotubes into thin films with improved electrical properties. Colloids Surf. A, 2014, 444, 89.

[18]

Iamsamai C., Soottitantawat A., Ruktanonchai U., Hannongbua S., Dubas S.T. Simple method for the layer-bylayer surface modification of multiwall carbon nanotubes. Carbon, 2011, 49(6): 2039.

[19]

Iamsamai C., Hannongbua S., Ruktanonchai U., Soottitantawat A., Dubas S.T. The effect of the degree of deacetylation of chitosan on its dispersion of carbon nanotubes. Carbon, 2010, 48(1): 25.

[20]

Turkevich J. Colloidal gold: Part I. Historical and preparative aspects, morphology and structure. Gold Bull, 1985, 18(3): 86.

[21]

Ji X., Song X., Li J., Bai Y., Yang W., Peng X.J. Size control of gold nanocrystals in citrate reduction: the third role of citrate. J. Am. Chem. Soc., 2007, 129(45): 13939.

[22]

Lim I.S., Mott D., Ip W., Njoki P.N., Pan Y., Zhou S.Q., Zhong C.J. Interparticle interactions in glutathione mediated assembly of gold nanoparticles. Langmuir, 2008, 24(16): 8857.

[23]

Molaakbari E., Mostafavi A., Beitollahi H. Simultaneous electrochemical determination of dopamine, melatonin, methionine and caffeine. Sens. Actuators B, 2015, 208, 195.

[24]

Qi S.P., Zhao B., Tang H.Q., Jiang X.Q. Determination of ascorbic acid, dopamine, and uric acid by a novel electrochemical sensor based on pristine graphene. Electrochim. Acta, 2015, 161, 395.

[25]

Lui W.J., Xiao J., Wang C.S., Yin H.Y., Xie H.F., Cheng R.S. Synthesis of polystyrene-grafted-graphene hybrid and its application in electrochemical sensor of dopamine. Mater. Lett., 2013, 100, 70.

[26]

Temoçin Z. Modification of glassy carbon electrode in basic medium by electrochemical treatment for simultaneous determination of dopamine, ascorbic acid and uric acid. Sens. Actuators B, 2013, 176, 796.

[27]

Thomas T., Mascarenhas R.J., Kumara B.E. Swamy, Poly(Rhodamine B) modified carbon paste electrode for the selective detection of dopamine. J. Mol. Liq., 2012, 174, 70.

[28]

Orozco E.C., Ramírez-Silva M.T., Avendaño S.C., Romo M.R., Pardavé M.P. Electrochemical quantification of dopamine in the presence of ascorbic acid and uric acid using a simple carbon paste electrode modified with SDS micelles at pH 7. Electrochim. Acta, 2012, 85, 307.

[29]

Mazloum-Ardakani M., Abolhasani M., Mirjalili B., Sheikh-Mohseni M.A., Dehghani-Firouzabadi A., Khoshroo A. Electrocatalysis of dopamine in the presence of uric acid and folic acid on modified carbon nanotube paste electrode. Chin. J. Catal., 2014, 35(2): 201.

[30]

Fritzen-Garcia M.B., Monteiro F.F., Cristofolini T., Acuña J.J.S., Zanetti-Ramos B.G., Oliveira I.R.W.Z., Soldi V., Pasa A.A., Creczynski-Pasa T.B. Characterization of horseradish peroxidase immobilized on PEGylated polyurethane nanoparticles and its application for dopamine detection. Sens. Actuators B, 2013, 182, 264.

[31]

Alothman Z.A., Bukhari N., Wabaidur S.M., Haider S. Simultaneous electrochemical determination of dopamine and acetaminophen using multiwall carbon nanotubes modified glassy carbon electrode. Sens. Actuators B, 2010, 146(1): 314.

[32]

Chandrashekar B.N., Kumara Swamy B.E., Pandurangachar M., Sathisha T.V., Sherigara B.S. Electropolymerisation of L-arginine at carbon paste electrode and its application to the detection of dopamine, ascorbic and uric acid. Colloids Surf. B, 2011, 88(1): 413.

AI Summary AI Mindmap
PDF

116

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/