Corrosion behavior of as-cast Mg–8Li–3Al+xCe alloy in 3.5wt% NaCl solution

S. Manivannan , P. Dinesh , R. Mahemaa , Nandhakumaran MariyaPillai , S. P. Kumaresh Babu , Srinivasan Sundarrajan

International Journal of Minerals, Metallurgy, and Materials ›› 2016, Vol. 23 ›› Issue (10) : 1196 -1203.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2016, Vol. 23 ›› Issue (10) : 1196 -1203. DOI: 10.1007/s12613-016-1339-4
Article

Corrosion behavior of as-cast Mg–8Li–3Al+xCe alloy in 3.5wt% NaCl solution

Author information +
History +
PDF

Abstract

Mg–8Li–3Al+xCe alloys (x = 0.5wt%, 1.0wt%, and 1.5wt%) were prepared through a casting route in an electric resistance furnace under a controlled atmosphere. The cast alloys were characterized by X-ray diffraction, optical microscopy, scanning electron microscopy, and energy-dispersive X-ray spectroscopy. The corrosion behavior of the as-cast Mg–8Li–3Al+xCe alloys were studied under salt spray tests in 3.5wt% NaCl solution at 35°C, in accordance with standard ASTM B–117, in conjunction with potentiodynamic polarization (PDP) tests. The results show that the addition of Ce to Mg–8Li–3Al (LA83) alloy results in the formation of Al2Ce intermetallic phase, refines both the α-Mg phase and the Mg17Al12 intermetallic phase, and then increases the microhardness of the alloys. The results of PDP and salt spray tests reveal that an increase in Ce content to 1.5wt% decreases the corrosion rate. The best corrosion resistance is observed for the LA83 alloy sample with 1.0wt% Ce.

Keywords

magnesium lithium alloys / cerium / sodium chloride solutions / corrosion rate / polarization

Cite this article

Download citation ▾
S. Manivannan, P. Dinesh, R. Mahemaa, Nandhakumaran MariyaPillai, S. P. Kumaresh Babu, Srinivasan Sundarrajan. Corrosion behavior of as-cast Mg–8Li–3Al+xCe alloy in 3.5wt% NaCl solution. International Journal of Minerals, Metallurgy, and Materials, 2016, 23(10): 1196-1203 DOI:10.1007/s12613-016-1339-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Wang T., Zhang M.L., Wu R.Z. Microstructure and properties of Mg–8Li–1Al–1Ce alloy. Mater. Lett., 2008, 62(12-13): 1846.

[2]

Crawford P., Barrosa R., Mendez J., Foyos J., Es-Said O.S. On the transformation characteristics of LA141A (Mg–Li–Al) alloy. J. Mater. Process. Technol., 1996, 56(1-4): 108.

[3]

Haferkamp H., Niemeyer M., Boehm R., Holzkamp U., Jaschik C., Kaese V. Development, processing and applications range of magnesium lithium alloys. Mater. Sci. Forum, 2000, 350-351(7): 31.

[4]

Wang T., Zhang M.L., Niu Z.Y., Liu B. Influence of rare earth elements on microstructure and mechanical properties of Mg−Li alloys. J. Rare Earths, 2006, 24(6): 797.

[5]

Jensen J.A., Chumbley L.S. Processing and mechanical properties of magnesium−lithium composites containing steel fibers. Metall. Mater. Trans. A, 1998, 29, 863.

[6]

Takuda H., Kikuchi S., Tsukada T., Kubota K., Hatta N. Effect of strain rate on deformation behaviour of a Mg–8.5Li–1Zn alloy sheet at room temperature. Mater. Sci. Eng. A, 1999, 271(1-2): 251.

[7]

Takuda H., Enami T., Kubota K., Hatta N. The formability of a thin sheet of Mg–8.5Li–1Zn alloy. J. Mater. Process. Technol., 2000, 101(1-3): 281.

[8]

Hara N., Kobayashi Y., Kagaya D., Akao N. Formation and breakdown of surface films on magnesium and its alloys in aqueous solutions. Corros. Sci., 2007, 49(1): 166.

[9]

Nordlien J.H., Nisancioglu K., Ono S., Masuko N. Morphology and structure of water-formed oxides on ternary MgAl alloys. J. Electrochem. Soc., 1997, 144(2): 461.

[10]

Wang J.L., Liao R.L., Wang L.D., Wu Y.M., Cao Z.Y., Wang L.M. Investigations of the properties of Mg−5Al−0.3Mn−xCe (x=0−3,wt.%) alloys. J. Alloys Compd., 2009, 477(1): 341.

[11]

Zhang M.L., Wu R.Z., Wang T. Microstructure and mechanical properties of Mg−8Li−(0−3)Ce alloys. J. Mater. Sci., 2009, 44(5): 1237.

[12]

Yan H., Chen R.S., Han E.H. Microstructures and mechanical properties of cold rolled Mg−8Li and Mg−8Li−2Al−2RE alloys. Trans. Nonferrous Met. Soc. China, 2010, 20(2): s550.

[13]

Liu B., Zhang M.L., Wu R.Z. Influence of Ce on microstructure and mechanical properties of LA141 alloys. Trans. Nonferrous Met. Soc. China, 2007, 17(1): s376.

[14]

Qu Z.K., Wu L.B., Wu R.Z., Zhang J.H., Zhang M.L., Liu B. Microstructures and tensile properties of hot extruded Mg–5Li–3Al–2Zn–xRE (rare earths) alloys. Mater. Des., 2014, 54, 792.

[15]

Song Y.W., Shan D.Y., Chen R.S., Han E. Corrosion characterization of Mg–8Li alloy in NaCl solution. Corros. Sci., 2009, 51(5): 1087.

[16]

Wu L.B., Liu X.H., Wu R.Z., Cui C.L., Zhang J.H., Zhang M.L. Microstructure and tensile properties of Mg−Li−Al− Zn based alloys with Ce addition. Trans. Nonferrous Met. Soc. China, 2012, 22(4): 779.

[17]

ASTM B117–11. Standard Practice for Operating Salt Spray (Fog) Apparatus, 2011

[18]

ASTM G31–72. Standard Practices for Laboratory Immersion Corrosion Testing of Metals, 2004

[19]

Wu L.B., Cui C.L., Wu R.Z., Li J.Q., Zhan H.B., Zhang M.L. Effects of Ce-rich RE additions and heat treatment on the microstructure and tensile properties of Mg–Li–Al–Zn-based alloy. Mater. Sci. Eng. A, 2011, 528(4-5): 2174.

[20]

Easton M., StJohn D. Grain refinement of aluminum alloys: Part II. Confirmation of, and a mechanism for, the solute paradigm. Metall. Mater. Trans. A, 1999, 30(6): 1625.

[21]

Uhlig H.H., Revie R.W. Corrosion and Corrosion Control, 1985 3 New York, John Wiley and Sons

AI Summary AI Mindmap
PDF

210

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/