Preparation of Al72Ni8Ti8Zr6Nb3Y3 amorphous powders and bulk materials

Yu Wu , Xin-fu Wang , Fu-sheng Han

International Journal of Minerals, Metallurgy, and Materials ›› 2016, Vol. 23 ›› Issue (10) : 1187 -1195.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2016, Vol. 23 ›› Issue (10) : 1187 -1195. DOI: 10.1007/s12613-016-1338-5
Article

Preparation of Al72Ni8Ti8Zr6Nb3Y3 amorphous powders and bulk materials

Author information +
History +
PDF

Abstract

Amorphous Al72Ni8Ti8Zr6Nb3Y3 powders were successfully fabricated by mechanical alloying. The microstructure, glass-forming ability, and crystallization behavior of amorphous Al72Ni8Ti8Zr6Nb3Y3 powders were investigated by X-ray diffraction (XRD), transmission electron microscopy (TEM), and differential scanning calorimetry (DSC). The isothermal crystallization kinetics was analyzed by the Johnson–Mehl–Avrami equation. In the results, the supercooled liquid region of the amorphous alloy is as high as 81 K, as determined by non-isothermal DSC curves. The activation energy for crystallization is as high as 312.6 kJ·mol−1 obtained by Kissinger and Ozawa analyses. The values of Avrami exponent (n) imply that the crystallization is dominated by interface-controlled three-dimensional growth in the early stage and the end stage and by diffusion-controlled two- or three-dimensional growth in the middle stage. In addition, the amorphous Al72Ni8Ti8Zr6Nb3Y3 powders were sintered under 2 GPa at temperatures of 673 K and 723 K. The results show that the Vickers hardness of the compacted powders is as high as Hv 1215.

Keywords

amorphous alloys / mechanical alloying / thermal stability / pressing / Vickers hardness

Cite this article

Download citation ▾
Yu Wu, Xin-fu Wang, Fu-sheng Han. Preparation of Al72Ni8Ti8Zr6Nb3Y3 amorphous powders and bulk materials. International Journal of Minerals, Metallurgy, and Materials, 2016, 23(10): 1187-1195 DOI:10.1007/s12613-016-1338-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Kassem M.A., Khafagy R.M. Thermal stability, crystallization kinetics and mechanical properties of Al81.8Ni9.2Co4.8Y3.1Zr1.1 amorphous alloy consolidated to a fully dense nanocrystalline matrix with some remaining amorphous phase. J. Alloys Compd., 2014, 607, 291.

[2]

Sanders W.S., Warner J.S., Miracle D.B. Stability of Al-rich glasses in the Al–La–Ni system. Intermetallics, 2006, 14(3): 348.

[3]

Basu J., Ranganathan S. Crystallisation in Al–ETM–LTM–La metallic glasses. Intermetallics, 2004, 12(10-11): 1045.

[4]

Cai A.H., Xiong X., Liu Y., An W.K., Tan J.Y. Artificial neural network modeling of reduced glass transition temperature of glass forming alloys. Appl. Phys. Lett, 2008

[5]

Zhao W., Wang Y.Y., Liu R.P., Li G. High compressibility of rare earth-based bulk metallic glasses. Appl. Phys. Lett., 2013

[6]

Roy D., Mitra R., Chudoba T., Witczak Z., Lojkowski W., Fecht H.J., Manna I. Structure and mechanical properties of Al65Cu20Ti15-based amorphous/nanocrystalline alloys prepared by high-pressure sintering. Mater. Sci. Eng. A, 2008, 497(1-2): 93.

[7]

Yuan M., Zhang D.C., Tan C.G., Luo Z.C., Mao Y.F., Lin J.G. Microstructure and properties of Al-based metal matrix composites reinforced by Al60Cu20Ti15Zr5 glassy particles by high pressure hot pressing consolidation. Mater. Sci. Eng. A, 2014, 590, 301.

[8]

Choi P.P., Kim J.S., Nguyen O.T.H., Kwon D.H., Kwon Y.S., Kim J.C. Al–La–Ni–Fe bulk metallic glasses produced by mechanical alloying and spark-plasma sintering. Mater. Sci. Eng. A, 2007, 449-451, 1119.

[9]

Miracle D.B. The efficient cluster packing model: an atomic structural model for metallic glasses. Acta Mater., 2006, 54(16): 4317.

[10]

Wei X., Wang X.F., Wang X.F., Han F.S. Crystallization kinetics of an amorphous Al75Ni10Ti10Zr5 alloy. J. Mater. Sci., 2010, 45(24): 6593.

[11]

Wei X., Wang X.F., Han F.S., Xie H.W., Wen C.E. Thermal stability of the Al70Ni10Ti10Zr5Ta5 amorphous alloy powder fabricated by mechanical alloying. J. Alloys Compd., 2010, 496(1-2): 313.

[12]

Shaw L., Luo H., Villegas J., Miracle D. Compressive behavior of an extruded nanocrystalline Al–Fe–Cr–Ti alloy. Scripta Mater., 2004, 50(7): 921.

[13]

Zou L.M., Li Y.H., Yang C., Qu S.G., Li Y.Y. Effect of Fe content on glass-forming ability and crystallization behavior of a (Ti69.7Nb23.7Zr4.9Ta1.7)100−xFex alloy synthesized by mechanical alloying. J. Alloys Compd., 2013, 553, 40.

[14]

Mu J., Zhang H.F. Glass forming ability and crystallization kinetics of Al–Mg–Ni–La metallic glasses. Adv. Mater. Res., 2014, 960-961, 161.

[15]

Salehi M., Shabestari S.G., Boutorabi S.M.A. Nanocrystal development and thermal stability of amorphous Al–Ni–Y–Ce alloy. J. Non Cryst. Solids, 2013, 375, 7.

[16]

Wang J.Q., Liu Y.H., Imhoff S., Chen N., Louzguine-Luzgin D.V., Takeuchi A., Chen M.W., Kato H., Perepezko J.H., Inoue A. Enhance the thermal stability and glass forming ability of Al-based metallic glass by Ca minor-alloying. Intermetallics, 2012, 29, 35.

[17]

Rheingans B., Ma Y.Z., Liu F., Mittemeijer E.J. Crystallisation kinetics of Fe40Ni40B20 amorphous alloy. J. Non Cryst. Solids, 2013, 362, 222.

[18]

Sun B.A., Pan M.X., Zhao D.Q., Wang W.H., Xi X.K., Sandor M.T., Wu Y. Aluminum-rich bulk metallic glasses. Scripta Mater., 2008, 59(10): 1159.

[19]

Zhuo L.C., Zhang T. Studies on the formability of Al-based metallic glasses/nanocomposites based on isochronal DSC analysis. J. Non Cryst. Solids, 2010, 356(43): 2258.

[20]

Ranganathan S., Von M. Heimendahl, The three activation energies with isothermal transformations: applications to metallic glasses. J. Mater. Sci., 1981, 16(9): 2401.

[21]

Prashanth K.G., Scudino S., Murty B.S., Eckert J. Crystallization kinetics and consolidation of mechanically alloyed Al70Y16Ni10Co4 glassy powders. J. Alloys Compd., 2009, 477(1-2): 171.

[22]

Abrosimova G., Aronin A., Budchenko A. Amorphous phase decomposition in Al–Ni–RE system alloys. Mater. Lett., 2015, 139, 194.

[23]

Azabou M., Khitouni M., Kolsi A. Characterization of nanocrystalline Al-based alloy produced by mechanical milling followed by cold-pressing consolidation. Mater. Charact., 2009, 60(6): 499.

[24]

Zhuo L.C., Yang B., Wang H., Zhang T. Spray formed Al-based amorphous matrix nanocomposite plate. J. Alloys Compd., 2011, 509(18): L169.

[25]

Mot B.W. Microindentation Hardness Testing, 1956, London, Butterworths, 132.

AI Summary AI Mindmap
PDF

105

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/