Upgradation of bauxite by molecular hydrogen and hydrogen plasma

B. R. Parhi , S. K. Sahoo , S. C. Mishra , B. Bhoi , R. K. Paramguru , B. K. Satapathy

International Journal of Minerals, Metallurgy, and Materials ›› 2016, Vol. 23 ›› Issue (10) : 1141 -1149.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2016, Vol. 23 ›› Issue (10) : 1141 -1149. DOI: 10.1007/s12613-016-1333-x
Article

Upgradation of bauxite by molecular hydrogen and hydrogen plasma

Author information +
History +
PDF

Abstract

An approach was developed to upgrade the bauxite ore by molecular hydrogen and hydrogen plasma. A gibbsite-type bauxite sample was obtained from National Aluminium Company (NALCO), Odisha, India. The obtained sample was crushed and sieved (to 100 μm) prior to the chemical analysis and grain-size distribution study. The bauxite sample was calcined in the temperature range from 500 to 700°C for different time intervals to optimize the conditions for maximum moisture removal. This process was followed by the reduction of the calcined ore by molecular hydrogen and hydrogen plasma. Extraction of alumina from the reduced ore was carried out via acid leaching in chloride media for 2 h at 60°C. X-ray diffraction, scanning electron microscopy, thermogravimetry in conjunction with differential scanning calorimetry, and Fourier transform infrared spectroscopy were used to determine the physicochemical characteristics of the material before and after extraction. Alumina extracted from the reduced ore at the optimum calcination temperature of 700°C and the optimum calcination time of 4 h is found to be 90% pure.

Keywords

upgrading / bauxite / calcination / leaching / alumina / extraction

Cite this article

Download citation ▾
B. R. Parhi, S. K. Sahoo, S. C. Mishra, B. Bhoi, R. K. Paramguru, B. K. Satapathy. Upgradation of bauxite by molecular hydrogen and hydrogen plasma. International Journal of Minerals, Metallurgy, and Materials, 2016, 23(10): 1141-1149 DOI:10.1007/s12613-016-1333-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Technology Information, Forecasting,Assessment Council TIFAC Reports. Beneficiation of Bauxite for Removal of Iron Oxide, 2001

[2]

Rai S., Wasewar K.L., Mukhopadhyay J., Yoo C.K., Uslu H. Neutralization and utilization of red mud for its better waste management. Arch. Environ. Sci., 2012, 6, 13.

[3]

Paramguru R.K., Rath P.C., Mishra V.N. Trends in red mud utilization: a review. Miner. Process. Extr. Metall. Rev., 2004, 26(1): 1.

[4]

Sglavo V.M., Maurina S., Conci A., Salviati A., Carturan G., Cocco G. Bauxite ‘red mud’ in the ceramic industry: Part 2. Production of clay-based ceramics. J. Eur. Ceram. Soc., 2000, 20(3): 245.

[5]

Zhu D.Q., Chun T.J., Pan J., He Z. Recovery of iron from high-iron red mud by reduction roasting with adding sodium salt. J. Iron Steel Res. Int., 2012, 19(8): 1.

[6]

Power G., Grafe M., Klauber C. Application of Bayer red mud for iron recovery and building material production from alumosilicate residues, bauxite residue issues: I. Current management, disposal and storage practices. Hydrometallurgy, 2011, 108(1-2): 33.

[7]

Liu Y.J., Naidu R. Hidden values in bauxite residue (red mud): recovery of metals. Waste Manage., 2014, 34(12): 2662.

[8]

Kounalakis P., Aravossis K., Karayianni C. Feasibility study for an innovative industrial red mud utilisation method. Waste Manage. Res., 2016, 34(2): 171.

[9]

Pyasi A. Value Added Metal Extraction from Red Mud [Dissertation], 2014, Rourkela, National Institute of Technology, 14.

[10]

Borra C.R., Pontikes Y., Binnemans K., Gerven T.V. Leaching of rare earths from bauxite residue (red mud). Miner. Eng., 2015, 76, 20.

[11]

Deady A., Mouchos E., Goodenough K., Williamson B.J., Wall F. A review of the potential for rare-earth element resources from European red muds: examples from Seydişehir, Turkey and Parnassus-Giona, Greece. Mineral. Mag., 2016, 80(1): 43.

[12]

Niculescu M.D. Study on chemically modified red mud for pollutants capturing from industrial effluents. Rev. Chim., 2014, 65(11): 1310.

[13]

Shirzad-Siboni M., Jafari S.J., Giahi O., Kim I., Lee S.M., Yang J.K. Removal of acid blue 113 and reactive black 5 dye from aqueous solutions by activated red mud. J. Ind. Eng. Chem., 2014, 20(4): 1432.

[14]

Kaußen F.M., Friedrich B. Reductive smelting of red mud for iron recovery. Chem. Ing. Tech., 2015, 87(11): 1535.

[15]

Liu Z.B., Li H.X. Metallurgical process for valuable elements recovery from red mud: a review. Hydrometallurgy, 2015, 155, 29.

[16]

Binnemans K., Jones P.T., Blanpain B., Gerven T.V., Pontikes Y. Towards zero-waste valorisation of rare-earth-containing industrial process residues: a critical review. J. Clean. Prod., 2015, 99, 17.

[17]

Ma M.J., Wang G.Y., Yang Z.P., Huang S.X., Guo W.J., Shen Y.X. Preparation, characterization, and photocatalytic properties of modified red mud. Adv. Mater. Sci. Eng., 2015, 2015, 1.

[18]

Kaußen F.M., Friedrich B. Methods for alkaline recovery of aluminum from bauxite residue. J. Sustain. Metall., 2016 1.

[19]

Lim K.H., Shon B.H. Metal components (Fe, Al, and Ti) recovery from red mud by sulfuric acid leaching assisted with ultrasonic waves. Int. J. Emerg. Technol. Adv. Eng., 2015, 5(2): 25.

[20]

Yeh C.H., Zhang G.Q. Stepwise carbothermal reduction of bauxite ores. Int. J. Miner. Process., 2013, 124, 1.

[21]

Halmann M., Epstein M., Steinfeld A. Vacuum carbothermic reduction of bauxite components: a thermodynamic study. Miner. Process. Extr. Metall. Rev., 2012, 33(3): 190.

[22]

Halmann M., Steinfeld A., Epstein M., Guglielmini E., Vishnevetsky I. Vacuum carbothermic reduction of alumina. Miner. Process. Extr. Metall. Rev., 2014, 35(2): 126.

[23]

Kitamura T., Shibata K., Takeda K. In-flight reduction of Fe2O3, Cr2O3, TiO2 and Al2O3 by Ar–H2 and Ar–CH4 plasma. ISIJ Int., 1993, 33(11): 1150.

[24]

Bhoi B., Mishra B.K., Paramguru R.K., Pradhan S.K., Mukherjee P.S., Sahoo S., Priyadarshini S., Rajput P., Das S.K. Green Process for the Preparation of Direct Reduced Iron, 2013

[25]

Lyubochko V.A., Malikov V.V., Parfenov O.G., Belousova N.V. Reduction of aluminum oxide in a nonequilibrium hydrogen plasma. J. Eng. Phys. Thermophys., 2000, 73(3): 568.

[26]

Bullard D.E., Lynch D.C. Reduction of titanium dioxide in a nonequilibrium hydrogen plasma. Metall. Mater. Trans. B, 1997, 28(6): 1069.

[27]

Sabat K.C., Paramguru R.K., Pradhan S., Mishra B.K. Reduction of cobalt oxide (Co3O4) by low temperature hydrogen plasma. Plasma Chem. Plasma Process., 2015, 35(2): 387.

[28]

Nakamura Y., Ito M., Ishikawa H. Reduction and dephosphorization of molten iron oxide with hydrogen–argon plasma. Plasma Chem. Plasma Process., 1981, 1(2): 149.

[29]

Huczko A., Meubus P. RF plasma processing of silica. Plasma Chem. Plasma Process., 1989, 9(3): 371.

[30]

Zhang W., Sadedin D.R., Reuter M.A., McCallum J.C. The de-oxidation of partially oxidized titanium by hydrogen plasma. Mater. Forum, 2007, 31, 76.

[31]

Bergh A.A. Atomic hydrogen as a reducing agent. Bell Syst. Tech. J., 1965, 44(2): 261.

[32]

Andersson J.M. Controlling the Formation and Stability of Alumina Phases [Dissertation], 2005, Linköping, Linköping University, 26.

[33]

Djebaili K., Mekhalif Z., Boumaza A., Djelloul A. XPS, FTIR, EDX, and XRD analysis of Al2O3 scales grown on PM2000 alloy. J. Spectrosc., 2015, 2015, 1.

AI Summary AI Mindmap
PDF

103

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/