Improved flotation performance of hematite fines using citric acid as a dispersant

Xi-mei Luo , Wan-zhong Yin , Chuan-yao Sun , Nai-ling Wang , Ying-qiang Ma , Yun-fan Wang

International Journal of Minerals, Metallurgy, and Materials ›› 2016, Vol. 23 ›› Issue (10) : 1119 -1125.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2016, Vol. 23 ›› Issue (10) : 1119 -1125. DOI: 10.1007/s12613-016-1330-0
Article

Improved flotation performance of hematite fines using citric acid as a dispersant

Author information +
History +
PDF

Abstract

In this study, citric acid was used as a dispersant to improve the flotation performance of hematite fines. The effect and mechanism of citric acid on the reverse flotation of hematite fines were investigated by flotation tests, sedimentation experiments, scanning electron microscopy (SEM), zeta-potential measurements, and X-ray photoelectron spectroscopy (XPS). The results of SEM analysis and flotation tests reveal that a strong heterocoagulation in the form of slime coating or coagulation in hematite fine slurry affects the beneficiation of hematite ores by froth flotation. The addition of a small amount of citric acid (less than 300 g/t) favorably affects the reverse flotation of hematite fines by improving particle dispersion. The results of sedimentation experiments, zeta-potential measurements, and XPS measurements demonstrate that citric acid adsorbs onto hematite and quartz surfaces via hydrogen bonding, thereby reducing the zeta potentials of mineral surfaces, strengthening the electrical double-layer repulsion between mineral particles, and dispersing the pulp particles.

Keywords

hematite / citric acid / dispersion / flotation / hydrogen bonding

Cite this article

Download citation ▾
Xi-mei Luo, Wan-zhong Yin, Chuan-yao Sun, Nai-ling Wang, Ying-qiang Ma, Yun-fan Wang. Improved flotation performance of hematite fines using citric acid as a dispersant. International Journal of Minerals, Metallurgy, and Materials, 2016, 23(10): 1119-1125 DOI:10.1007/s12613-016-1330-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ma X., Marques M., Gontijo C. Comparative studies of reverse cationic/anionic flotation of Vale iron ore. Int. J. Miner. Process., 2011, 100(3-4): 179.

[2]

Turrer H.D.G., Peres A.E.C. Investigation on alternative depressants for iron ore flotation. Miner. Eng., 2010, 23(11-13): 1066.

[3]

Filippov L.O., Severov V.V., Filippova I.V. An overview of the beneficiation of iron ores via reverse cationic flotation. Int. J. Miner. Process., 2014, 127, 62.

[4]

Kar B., Sahoo H., Rath S.S., Das B. Investigations on different starches as depressants for iron ore flotation. Miner. Eng., 2013, 49, 1.

[5]

Chen W. Technological progress in processing low-grade fine-grained complicated refractory iron ores. Met. Mine, 2010, 5, 55.

[6]

Fuerstenau D.W., Chander S., Abouzeid A.M. The Recovery of Fine Particles by Physical Separation Methods, 1979, New York, AIME, 55.

[7]

Seaman D.R., Lauten R.A., Kluck G., Stoitis N. Usage of anionic dispersants to reduce the impact of clay particles in flotation of copper and gold at the Telfer mine. Proceedings 11th AusIMM Mill Operators’ Conference, 2012, Tasmania, Hobart, 207.

[8]

Song S., Lopez-Valdivieso A., Marine-Martinez C., Torres-Armenta R. Improving fluorite flotation from ores by dispersion processing. Miner. Eng., 2006, 19(9): 912.

[9]

Zhang G.F. Theory and Technology of Flotation on Bauxite Desilicate [Dissertation], 2001, Changsha, Central South University, 66.

[10]

Feng B., Feng Q.M., Lu Y.P. Dispersion mechanism of CMC on flotation system of serpentine and pyrite. J. Cent. South Univ. Sci. Technol., 2013, 44(7): 2644.

[11]

Long T., Feng Q.M., Lu Y.P. Dispersive mechanism of sodium hexametaphosphate on flotation of copper-nickel sulphide. Chin. J. Nonferrous Met., 2012, 22(6): 1763.

[12]

Lu Y.P., Zhang M.Q., Feng Q.M., Long T., Ou L.M., Zhang G.F. Effect of sodium hexametaphosphate on separation of serpentine from pyrite. Trans. Nonferrous Met. Soc. China, 2011, 21(1): 208.

[13]

Luo X.M., Yin W.Z., Yao J., Sun C.Y., Cao Y., Ma Y.Q., Hou Y. Flotation separation of magnetic separation concentrate of refractory hematite containing carbonate with enhanced dispersion. Chin. J. Nonferrous Met., 2013, 23(1): 238.

[14]

Yin W.Z., Ma Y.Q., Wang N.L., Luo X.M. Research on dispersion flotation of iron ores based on mineral interactive effect. Nonferrous Met., 2013, 1, 146.

[15]

Lu D.F., Zhang Y., Zhou Y.L., Wang Y.H. Experimental research on beneficiation process for a limonite ore. Met. Mine, 2008, 7, 43.

[16]

Liu Q., Zhang Y.H. Effect of calcium ions and citric acid on the flotation separation of chalcopyrite from galena using dextrin. Miner. Eng., 2000, 13(13): 1405.

[17]

Gan W.B., Crozier B., Liu Q. Effect of citric acid on inhibiting hexadecane-quartz coagulation in aqueous solutions containing Ca2+, Mg2+ and Fe3+ ions. Int. J. Miner. Process., 2009, 92(1-2): 84.

[18]

Liu Y., Liu Q.S. Flotation separation of carbonate from sulfide minerals: II. Mechanisms of flotation depression of sulfide minerals by thioglycollic acid and citric acid. Miner. Eng., 2004, 17, 865.

[19]

Zheng X., Smith R.W. Dolomite depressants in the flotation of apatite and collophane from dolomite. Miner. Eng., 1997, 10(5): 537.

[20]

Mei J.T., Wulan T.Y., He R.A., Yang W. Synthesis and application of flotation reagents for Donganshan refractory iron ores. Met. Mine, 2009, 9, 74.

[21]

Luo X.M., Yin W.Z., Yao J., Sun C.Y., Ma Y.Q., Hou Y. New flotation technology research on refractory iron ore concentrate of magnetic separation. Nonferrous Met., 2012, 4, 46.

[22]

Wu W. Depression and Activation of Organic Chelating Modifying Agents in Flotation of Mineral [Dissertation], 2007, Beijing, University of Science and Technology Beijing, 35.

AI Summary AI Mindmap
PDF

132

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/