Corrosion behavior of low alloy steels in a wet–dry acid humid environment

Qing-he Zhao , Wei Liu , Jian-wei Yang , Yi-chun Zhu , Bin-li Zhang , Min-xu Lu

International Journal of Minerals, Metallurgy, and Materials ›› 2016, Vol. 23 ›› Issue (9) : 1076 -1086.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2016, Vol. 23 ›› Issue (9) : 1076 -1086. DOI: 10.1007/s12613-016-1325-x
Article

Corrosion behavior of low alloy steels in a wet–dry acid humid environment

Author information +
History +
PDF

Abstract

The corrosion behavior of corrosion resistant steel (CRS) in a simulated wet–dry acid humid environment was investigated and compared with carbon steel (CS) using corrosion loss, polarization curves, X-ray diffraction (XRD), scanning electron microscopy (SEM), electron probe micro-analysis (EPMA), N2 adsorption, and X-ray photoelectron spectroscopy (XPS). The results show that the corrosion kinetics of both steels were closely related to the composition and compactness of the rust, and the electrochemical properties of rusted steel. Small amounts of Cu, Cr, and Ni in CRS increased the amount of amorphous phases and decreased the content of γ-FeOOH in the rust, resulting in higher compactness and electrochemical stability of the CRS rust. The elements Cu, Cr, and Ni were uniformly distributed in the CRS rust and formed CuFeO2, Cu2O, CrOOH, NiFe2O4, and Ni2O3, which enhanced the corrosion resistance of CRS in the wet–dry acid humid environment.

Keywords

low alloy steel / steel corrosion / rust / polarization curves / corrosion resistance

Cite this article

Download citation ▾
Qing-he Zhao, Wei Liu, Jian-wei Yang, Yi-chun Zhu, Bin-li Zhang, Min-xu Lu. Corrosion behavior of low alloy steels in a wet–dry acid humid environment. International Journal of Minerals, Metallurgy, and Materials, 2016, 23(9): 1076-1086 DOI:10.1007/s12613-016-1325-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Soares C.G., Garbatov Y., Zayed A., Wang G. Corrosion wastage model for ship crude oil tanks. Corros. Sci., 2008, 50(11): 3095.

[2]

Kashima K., Tanino Y., Kubo S., Inami A., Miyuki H. Development of corrosion resistant steel for cargo oil tanks. Proceeding of International Symposium on Shipbuilding Technology: Fabrication and Coatings, 2007 5.

[3]

Li D.P., Zhang L., Yang J.W., Lu M.X., Ding J.H., Liu M.L. Effect of H2S concentration on the corrosion behavior of pipeline steel under the coexistence of H2S and CO2. Int. J. Miner. Metall. Mater., 2014, 21(4): 388.

[4]

Shiomi H., Kaneko M., Kashima K., Imamura H., Komori T. Development of anti-corrosion steel for cargo oil tanks. Proceeding of TSCF 2007 Shipbuilders Meeting, 2007 1.

[5]

Yamaguchi Y., Terashima S. Development of Guidelines on Corrosion Resistant Steels for Cargo Oil Tanks. Proceeding of ASME 2011 30th International Conference on Ocean, Offshore and Arctic Engineering, 2011 333.

[6]

Yasuto I., Kazuhiko S., Tsutomu K., Kimihiro N. Corrosion Resistant Steel for Crude Oil Tank, Manufacturing Method Therefor, and Crude Oil Tank, 2015

[7]

Usami A., Katoh K., Hasegawa T., Shishibori A. Crude Oil Tank Comprising a Corrosion Resistant Steel Alloy, 2011

[8]

Kazuhiko S., Yasuto I., Tsutomu K. Corroson-resistant Steel Material for Crude Oil Storage Tank, and Crude Oil Storage Tank, 2009

[9]

Usami A., Katoh K., Hasegawa T., Shishibori A. Crude Oil Tank and Method for Producing a Steel for a Crude Oil Tank, 2013

[10]

Liang J.M., Tang D., Wu H.B., Wang L.D. Environment corrosion behavior of cargo oil tank deck made of Cr-contained low-alloy steel. J. Southeast Univ. Nat. Sci. Ed., 2013, 43(1): 152.

[11]

Liu W., Fan X.H., Li S.F., Lu M.X. Corrosion behavior of low alloy steels in a CO2–O2–H2S–SO2 wet gas environment of crude oil tanks. J. Univ. Sci. Technol. Beijing, 2011, 33(1): 33.

[12]

Zhao Q.H., Liu W., Zhao J., Zhang D., Liu P.C., Lu M.X. Influence of chromium on the initial corrosion behavior of low alloy steels in the CO2–O2–H2S–SO2 wet–dry corrosion environment of cargo oil tankers. Int. J. Miner. Metall. Mater., 2015, 22(8): 829.

[13]

International Maritime Organization. Performance standard for alternative means of corrosion protection for cargo oil tanks of crude oil tankers. Proceeding of the Marine Safety Committee on its Eighty-seventh Session Annex 3 MSC, 2010, 289(87): 1.

[14]

Guo J., Yang S.W., Shang C.J., Wang Y., He X.L. Influence of carbon content and microstructure on corrosion behaviour of low alloy steels in a Cl–containing environment. Corros. Sci., 2009, 51(2): 242.

[15]

Hao L., Zhang S.X., Dong J.H., Ke W. Evolution of atmospheric corrosion of MnCuP weathering steel in a simulated coastal-industrial atmosphere. Corros. Sci., 2012, 59, 270.

[16]

Hoerlé S., Mazaudier F., Dillmann P.h., Santarini G. Advances in understanding atmospheric corrosion of iron: -. Mechanistic modelling of wet–dry cycles. Corros. Sci., 2004, 46(6): 1431.

[17]

Tamura H. The role of rusts in corrosion and corrosion protection of iron and steel. Corros. Sci., 2008, 50(7): 1872.

[18]

Hao L., Zhang S.X., Dong J.H., Ke W. A study of the evolution of rust on Mo–Cu-bearing fire-resistant steel submitted to simulated atmospheric corrosion. Corros. Sci., 2012, 54, 244.

[19]

Chen W.J., Hao L., Dong J.H., Ke W. Effect of sulphur dioxide on the corrosion of a low alloy steel in simulated coastal industrial atmosphere. Corros. Sci., 2014, 83, 155.

[20]

Yi P., Xiao K., Ding K.K., Wang X., Yan L.D., Mao C.L., Dong C.F., Li X.G. Electrochemical corrosion failure mechanism of M152 steel under a salt-spray environment. Int. J. Miner. Metall. Mater., 2015, 22(11): 1183.

[21]

Dillmann P.h., Mazaudier F., Hoerlé S. Advances in understanding atmospheric corrosion of iron: I. Rust characterisation of ancient ferrous artefacts exposed to indoor atmospheric corrosion. Corros. Sci., 2004, 46(6): 1401.

[22]

Aasmi K., Kikuchi M. In-depth distribution of rusts on a plain carbon steel and weathering steels exposed to coastal indutrial atmosphere for 17 years. Corros. Sci., 2003, 45(11): 2671.

[23]

Yamashita M., Miyuki H., Matsuda Y., Nagano H., Misawa T. The long term growth of the protective rust layer formed on weathering steel by atmospheric corrosion during a quarter of a century. Corros. Sci., 1994, 36(2): 283.

[24]

Morcillo M., Díaz I., Chico B., Cano H., de la Fuente D. Fuente, Weathering steels: from empirical development to scientific design. A review. Corros. Sci., 2014, 83, 6.

[25]

Ishikawa T., Yoshida T., Kandori K., Nakayama T., Hara S. Assessment of protective function of steel rust layers by N2 adsorption. Corros. Sci., 2007, 49(3): 1468.

[26]

Qian Y.H., Ma C.H., Niu D., Xu J.J., Li M.S. Influence of alloyed chromium on the atmospheric corrosion resistance of weathering steels. Corros. Sci., 2013, 74, 424.

[27]

Townsend H. Effects of alloying elements on the corrosion of steel in industrial atmospheres. Corrosion, 2001, 57(6): 497.

[28]

Kimura M., Kihira H., Ohta N., Hashimoto M., Senuma T. Control of Fe(O,OH)6 nano-network structures of rust for high atmospheric-corrosion resistance. Corros. Sci., 2005, 47(10): 2499.

[29]

Kimura M., Suzuki T., Shigesato G., Kihira H., Tanabe K. Fe(O,OH)6 network structure of rust formed on weathering steel surfaces and its relationship with corrosion resistance. Nippon Steel Tech. Rep., 2003, 87, 17.

[30]

Antony H., Legrand L., Maréchal L., Perrin S., Dillmann P.h., Chaussé A. Study of lepidocrocite γ-FeOOH electrochemical reduction in neutral and slightly alkaline solutions at 25°C. Electrochim. Acta, 2005, 51(4): 745.

[31]

Zhong J.Y., Sun M., Liu D.B., Li X.G., Liu T.Q. Effects of chromium on the corrosion and electrochemical behaviors of ultra high strength steels. Int. J. Miner. Metall. Mater., 2010, 17(3): 282.

AI Summary AI Mindmap
PDF

130

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/