Nanoscale precipitates and comprehensive strengthening mechanism in AISI H13 steel

Wen-wen Mao , An-gang Ning , Han-jie Guo

International Journal of Minerals, Metallurgy, and Materials ›› 2016, Vol. 23 ›› Issue (9) : 1056 -1064.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2016, Vol. 23 ›› Issue (9) : 1056 -1064. DOI: 10.1007/s12613-016-1323-z
Article

Nanoscale precipitates and comprehensive strengthening mechanism in AISI H13 steel

Author information +
History +
PDF

Abstract

The effects of heat treatment on the precipitates and strengthening mechanism in AISI H13 steel were investigated. The results showed that the presence of nanoscale precipitates favorably affected grain refinement and improved the yield strength. The volume fraction of precipitates increased from 1.05% to 2.85% during tempering, whereas the average precipitate size first decreased then increased during tempering. Contributions to the yield strength arising from the various mechanisms were calculated quantificationally, and the results demonstrated that grain refinement and dislocation density most strongly influenced the yield strength. In addition, under the interaction of average size and volume fraction, precipitates’ contribution to the yield strength ranged from 247.9 to 378.5 MPa. Finally, a root-mean-square summation law of σ = σg + σs + (σd 2 + σp 2)1/2, where σg, σs, σd, and σp represent the contributions of fine-grain strengthening, solid-solution strengthening, dislocation strengthening, and precipitation strengthening, respectively, was confirmed as the most applicable for AISI H13 steel, which indicates a strong link between precipitates and dislocations in AISI H13 steel.

Keywords

die steel / precipitates / strengthening / dislocation

Cite this article

Download citation ▾
Wen-wen Mao, An-gang Ning, Han-jie Guo. Nanoscale precipitates and comprehensive strengthening mechanism in AISI H13 steel. International Journal of Minerals, Metallurgy, and Materials, 2016, 23(9): 1056-1064 DOI:10.1007/s12613-016-1323-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Genel K. Boriding kinetics of H13 steel. Vacuum, 2006, 80(5): 451.

[2]

Wu Z., Li J., Shi C.B., Wang L.L. Effect of magnesium addition on inclusions in H13 die steel. Int. J. Miner. Metall. Mater., 2014, 21(11): 1062.

[3]

Ma D.S., Zhou J., Chen Z.Z., Zhang Z.K., Chen Q.A., Li D.H. Influence of thermal homogenization treatment on structure and impact toughness of H13 ESR steel. J. Iron Steel Res. Int., 2009, 16(5): 56.

[4]

Telasang G., Dutta Majumdar J., Padmanabham G., Manna I. Wear and corrosion behavior of laser surface engineered AISI H13 hot working tool steel. Surf. Coat. Technol., 2015, 261, 69.

[5]

Teixidor D., Ferrer I., Ciurana J., Özel T. Optimization of process parameters for pulsed laser milling of micro-channels on AISI H13 tool steel. Rob. Comput. Integr. Manuf., 2013, 29(1): 209.

[6]

Meng C., Zhou H., Tong X., Cong D.L., Wang C.W., Ren L.Q. Comparison of thermal fatigue behaviour and microstructure of different hot work tool steels processed by biomimetic couple laser remelting process. Mater. Sci. Technol., 2013, 29(4): 496.

[7]

Song W.W., Min Y.A., Wu X.C. Study on carbides and their evolution in H13 hot work steel. Trans. Mater. Heat Treat., 2009, 30(5): 122.

[8]

Tsujii N., Abe G., Fukaura K., Sunada H. Effect of testing atmosphere on low cycle fatigue of hot work tool steel at elevated temperature. ISIJ Int., 1995, 35(7): 920.

[9]

Xue S., Zhou J., Zhang Y.W., Geng P. Analysis of carbides in spheroidized H13 steel. Trans. Mater. Heat Treat., 2012, 33(2): 100.

[10]

Hu X.B., Li L., Wu X.C. Coarsening kinetics of carbides in 4Cr5MoSiV1 hot work tool steel during thermal fatigue. Trans. Mater. Heat Treat., 2005, 26(1): 57.

[11]

Fu J., Li G.Q., Mao X.P., Fang K.M. Nanoscale cementite precipitates and comprehensive strengthening mechanism of steel. Metall. Mater. Trans. A, 2011, 42, 3797.

[12]

Kang Y.L., Han Q.H., Zhao X.M., Cai M.H. Influence of nanoparticle reinforcements on the strengthening mechanisms of an ultrafine-grained dual phase steel containing titanium. Mater. Des., 2013, 44, 331.

[13]

Li Q. Modeling the microstructure–mechanical property relationship for a 12Cr-2W-V-Mo-Ni power plant steel. Mater. Sci. Eng. A, 2003, 361(1-2): 385.

[14]

Charleux M., Poole W.J., Militzer M., Deschamps A. Precipitation behavior and its effect on strengthening of an HSLA-Nb/Ti steel. Metall. Mater. Trans. A, 2001, 32(7): 1635.

[15]

Carretero Olalla V., Bliznuk V., Sanchez N., Thibaux P., Kestens L.A.I., Petrov R.H. Analysis of the strengthening mechanisms in pipeline steels as a function of the hot rolling parameters. Mater. Sci. Eng. A, 2014, 604, 46.

[16]

Zhao Y.H., Liao X.Z., Jin Z., Valiev R.Z., Zhu Y.T. Microstructures and mechanical properties of ultrafine grained 7075 Al alloy processed by ECAP and their evolutions during annealing. Acta Mater., 2004, 52(15): 4589.

[17]

Youssef K.M., Scattergood R.O., Murty K.L., Koch C.C. Nanocrystalline Al–Mg alloy with ultrahigh strength and good ductility. Scripta Mater., 2006, 54(2): 251.

[18]

Kroupa A., Havránková J., Svoboda M., Coufalová M., Vreštál J. Phase diagram in the iron-rich corner of the Fe–Cr–Mo–V–C system below 1000 K. J. Phase Equilib., 2001, 22(3): 312.

[19]

Fan Y.F., Yu H., Sun J., Tao P., Song C.H., Zeng X. Study on precipitation and transition mechanisms from the magnetic properties of silicon steel during annealing. Int. J. Miner. Metall. Mater., 2014, 21(4): 379.

[20]

Zhang X.G., Matsuura K., Ohno M. Abnormal grain growth in austenite structure reversely transformed from ferrite/pearlite-banded structure. Metall. Mater. Trans. A, 2014, 45(10): 4623.

[21]

Oikawa T., Zhang J.J., Enomoto M., Adachi Y. Influence of carbide particles on the grain growth of ferrite in an Fe–0.1C–0.09V Alloy. ISIJ Int., 2013, 53(7): 1245.

[22]

García Mateo C., Capdevila C., Caballero F.G., Andrés C.G.D. Influence of V precipitates on acicular ferrite transformation Part 1: the role of nitrogen. ISIJ Int., 2008, 48(9): 1270.

[23]

Zhang B., Peng X.D., Ma Y., Li Y.M., Yu Y.Q., Wei G.B. Microstructure and mechanical properties of Mg-9Li-3Al-xGd alloys. Mater. Sci. Technol., 2015, 31(9): 1035.

[24]

Nemati J., Majzoobi G.H., Sulaiman S., Baharudin B.T.H.T., Azmah Hanim M.A. Improvements in the microstructure and fatigue behavior of pure copper using equal channel an gular extrusion. Int. J. Miner. Metall. Mater., 2014, 21(6): 569.

[25]

Majta J., Lenard J.G., Pietrzyk M. A study of the effect of the thermomechanical history on the mechanical properties of a high niobium steel. Mater. Sci. Eng. A, 1996, 208(2): 249.

[26]

Yong Q.L. Secondary Phases in Steels, 2006 8.

[27]

Sherby O.D., Wadsworth J., Lesuer D.R., Syn C.K. Martensite in quenched Fe–C steels and Engel–Brewer electron theory of crystal structures. Mater. Sci. Technol., 2012, 28(4): 471.

[28]

Hutchinson B., Hagström J., Karlsson O., Lindell D., Tornberg M., Lindberg F., Thuvander M. Microstructures and hardness of as-quenched martensites (0.1–0.5%C). Acta Mater., 2011, 59(14): 5845.

[29]

Hajizadeh K., Eghbali B., Topolski K., Kurzydlowski K.J. Ultra-fine grained bulk CP-Ti processed by multipass ECAP at warm deformation region. Mater. Chem. Phys., 2014, 143(3): 1032.

[30]

Jamaati R., Toroghinejad M.R., Amirkhanlou S., Edris H. Strengthening mechanisms in nanostructured interstitial free steel deformed to high strain. Mater. Sci. Eng. A, 2015, 639, 656.

[31]

Gladman T. Precipitation hardening in metals. Mater. Sci. Technol., 1998, 15(1): 30.

[32]

Li S.S., Liu Y.H., Song Y.L., Kong L.N., Zhang R.H., Li T.J. Microstructure, mechanical properties and strengthening mechanisms of 5Cr5MoV modified by aluminum. Mater. Des., 2015, 83, 483.

[33]

Ohlund C.E.I.C., Ouden D.D., Weidow J., Thuvander M., Offerman S.E. Modelling the evolution of multiple hardening mechanisms during tempering of Fe–C–Mn–Ti martensite. ISIJ Int., 2015, 55(4): 884.

[34]

Wang X.P., Zhao A.M., Zhao Z.Z., Huang Y., Li L., He Q. Mechanical properties and characteristics of nanometer-sized precipitates in hot-rolled low-carbon ferritic steel. Int. J. Miner. Metall. Mater., 2014, 21(3): 266.

AI Summary AI Mindmap
PDF

133

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/