Cost-effective integrated strategy for the fabrication of hard-magnet barium hexaferrite powders from low-grade barite ore

M. M. S. Sanad , M. M. Rashad

International Journal of Minerals, Metallurgy, and Materials ›› 2016, Vol. 23 ›› Issue (9) : 991 -1000.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2016, Vol. 23 ›› Issue (9) : 991 -1000. DOI: 10.1007/s12613-016-1316-y
Article

Cost-effective integrated strategy for the fabrication of hard-magnet barium hexaferrite powders from low-grade barite ore

Author information +
History +
PDF

Abstract

Ultrafine barium hexaferrite (BaFe12O19) powders were synthesized from the metallurgical extracts of low-grade Egyptian barite ore via a co-precipitation route. Hydrometallurgical treatment of barite ore was systematically studied to achieve the maximum dissolution efficiency of Fe (~99.7%) under the optimum conditions. The hexaferrite precursors were obtained by the co-precipitation of BaS produced by the reduction of barite ore with carbon at 1273 K and then dissolved in diluted HCl and FeCl3 solution at pH 10 using NaOH as a base; the product was then annealed at 1273 K in an open atmosphere. The effect of Fe3+/Ba2+ molar ratio and the addition of hydrogen peroxide (H2O2) on the phase structure, crystallite size, morphology, and magnetic properties were investigated by X-ray diffraction, scanning electron microscopy, and vibrating sample magnetometry. Single-phase BaFe12O19 powder was obtained at an Fe3+/Ba2+ molar ratio of 8.00. The formed powders exhibited a hexagonal platelet-like structure. Good maximum magnetization (48.3 A·m2·kg–1) was achieved in the material prepared at an Fe3+/Ba2+ molar ratio of 8.0 in the presence of 5% H2O2 as an oxidizer and at 1273 K because of the formation of a uniform, hexagonal-shaped structure.

Keywords

chemical process / barite ore treatment / characterization / magnetic properties / ferrites

Cite this article

Download citation ▾
M. M. S. Sanad, M. M. Rashad. Cost-effective integrated strategy for the fabrication of hard-magnet barium hexaferrite powders from low-grade barite ore. International Journal of Minerals, Metallurgy, and Materials, 2016, 23(9): 991-1000 DOI:10.1007/s12613-016-1316-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Pullar R.C., Taylor M.D., Bhattacharya A.K. Novel aqueous sol–gel preparation and characterization of barium M ferrite, BaFe12O19 fibres. J. Mater. Sci., 1997, 32(2): 349.

[2]

Rashad M.M., Rasly M., El-Sayed H.M., Sattar A.A., Ibrahim I.A. Controlling the composition and the magnetic properties of hexagonal CO2Z ferrite powders synthesized using two different methods. Appl. Phys. A, 2013, 112(4): 963.

[3]

Rashad M.M., Ibrahim I.A. Structural, microstructure and magnetic properties of strontium hexaferrite particles synthesized by modified coprecipitation method. Mater. Technol., 2012, 27(4): 308.

[4]

Iqbal M.J., Ashiq M.N., Gomez P.H., Munoz J.M. Synthesis, physical, magnetic and electrical properties of Al–Ga substituted co-precipitated nanocrystalline strontium hexaferrite. J. Magn. Magn. Mater., 2008, 320(6): 881.

[5]

Rashad M.M., Ibrahim I.A. Improvement of the magnetic properties of barium hexaferrite nanopowders using modified co-precipitation method. J. Magn. Magn. Mater., 2011, 323(16): 2158.

[6]

Rashad M.M., Ibrahim I.A. A novel approach for synthesis of M-type hexaferrites nanopowders via the co-precipitation method. J. Mater. Sci. Mater. Electron., 2011, 22, 1796.

[7]

Matutes-Aquino J., Díaz-Castañón S., Mirabal-García M., Palomares-Sánchez S.A. Synthesis by coprecipitation and study of barium hexaferrite powders. Scripta Mater., 2000, 42(3): 295.

[8]

Shi Y., Ding J., Liu X., Wang J. NiFe2O4 ultrafine particles prepared by co-precipitation/mechanical alloying. J. Magn. Magn. Mater., 1999, 205, 249.

[9]

Mishra D., Anand S., Panda R.K., Das R.P. Studies on characterization, microstructures and magnetic properties of nano-size barium hexa-ferrite prepared through a hydrothermal precipitation-calcination route. Mater. Chem. Phys., 2004, 86(1): 132.

[10]

González-Carreño T., Morales M.P., Serna C.J. Barium ferrite nanoparticles prepared directly by aerosol pyrolysis. Mater. Lett., 2000, 43(3): 97.

[11]

Zhong W., Ding W.P., Zhang N., Hong J.M., Yan Q.J., Du Y.W. Key step in synthesis of ultrafine BaFe12O19by sol-gel technique. J. Magn. Magn. Mater., 1997, 168(1-2): 196.

[12]

Garcia R.M., Ruiz E.R., Rams E.E., Sanchez R.M. Effect of precursor milling on magnetic and structural properties of BaFe12O19 M-ferrite. J. Magn. Magn. Mater., 2001, 223(2): 133.

[13]

El-Hilo M., Pfeiffer H., O’Grady K., Schüppel W., Sinn E., Görnert P., Rösler M., Dickson D.P.E., Chantrell R.W. Magnetic properties of barium hexaferrite powders. J. Magn. Magn. Mater., 1994, 129(2-3): 339.

[14]

Pillai V., Kumar P., Multani M.S., Shah D.O. Structure and magnetic properties of nanoparticles of barium ferrite synthesized using microemulsion processing. Colloids Surf. A, 1993, 80(1): 69.

[15]

Rashad M.M., Ibarhim I.A. Synthesis and magnetic properties of barium hexaferrite powders using organic acid precursor method. J. Superconduct. Novel Magn., 2013, 26(5): 1639.

[16]

Rashad M.M., Rayan D.A., Turky A.O., Hessien M.M. Effect of CO2+ and Y3+ ions insertion on the microstructure development and magnetic properties of Ni0.5Zn0.5Fe2O4 powders synthesized using co-precipitation method. J. Magn. Magn. Mater., 2015, 374, 359.

[17]

Rashad M.M., Radwan M., Hessien M.M. Effect of Fe/Ba mole ratios and surface-active agents on the formation and magnetic properties of co-precipitated barium hexaferrite. J. Alloys Compd., 2008, 453(1-2): 304.

[18]

Lu Z.Y., Muir D.M. Dissolution of metal ferrites and iron oxides by HCl under oxidising and reducing conditions. Hydrometallurgy, 1988, 21(1): 9.

[19]

Mahmoud M.H.H., Afifi A.A.I., Ibrahim I.A. Reductive leaching of ilmenite ore in hydrochloric acid for preparation of synthetic rutile. Hydrometallurgy, 2004, 73(1-2): 99.

[20]

Pelovski Y., Gruncharov K., Dombalov I. Isothermal reduction of barite with hydrogen. J. Therm. Anal., 1990, 36(6): 2037.

[21]

Hlabela P.S., Neomagus H.W.J.P., Waanders F.B., Bruinsma O.S.L. Thermal reduction of barium sulfate with carbon monoxide-A thermogravimetric study. Thermochim. Acta, 2010, 498(1-2): 67.

[22]

Bafghi M.S.h., Yarahmadi A., Ahmadi A., Mehrjoo H. Effect of the type of carbon material on the reduction kinetics of barium sulfate. Iranian J. Mater. Sci. Eng., 2011, 8(3): 1.

[23]

Jagtap S.B., Pande A.R., Gokarn A.N. Effect of catalysts on the kinetics of the reduction of barite by carbon. Ind. Eng. Chem. Res., 1990, 29(5): 795.

[24]

Hessien M.M., Rashad M.M., Hassan M.S., El-Barawy K. Synthesis and magnetic properties of strontium hexaferrite from celestite ore. J. Alloys Compd., 2009, 476(1-2): 373.

[25]

J. Appl. Phys., 2013, 114(24)

[26]

Shhirk B., Buessem W. Temperature dependence of Ms and K1 of BaFe12O19 and SrFe12O19. J. Appl. Phys., 1969, 40, 1294.

[27]

Manikandan M., Venkateswaran C. Effect of high energy milling on the synthesis temperature, magnetic and electrical properties of barium hexagonal ferrite. J. Magn. Magn. Mater., 2014, 358-359, 82.

[28]

Din M.F., Ahmad I., Ahmad M., Farid M.T., Iqbal M.A., Murtaza G., Akhtar M.N., Shakir I., Warsi M.F., Khan M.A. Influence of Cd substitution on structural, electrical and magnetic properties of M-type barium hexaferrites co-precipitated nanomaterials. J. Alloys Compd., 2014, 584, 646.

[29]

Meng Y.Y., He M.H., Zeng Q., Jiao D.L., Shukla S., Ramanujan R.V., Liu Z.W. Synthesis of barium ferrite ultrafine powders by a sol–gel combustion method using glycine gels. J. Alloys Compd., 2014, 583, 220.

AI Summary AI Mindmap
PDF

132

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/