Pseudo-in-situ stir casting: a new method for production of aluminum matrix composites with bimodal-sized B4C reinforcement

Mohammad Raei , Masoud Panjepour , Mahmood Meratian

International Journal of Minerals, Metallurgy, and Materials ›› 2016, Vol. 23 ›› Issue (8) : 981 -990.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2016, Vol. 23 ›› Issue (8) : 981 -990. DOI: 10.1007/s12613-016-1315-z
Article

Pseudo-in-situ stir casting: a new method for production of aluminum matrix composites with bimodal-sized B4C reinforcement

Author information +
History +
PDF

Abstract

A new method was applied to produce an Al-0.5wt%Ti-0.3wt%Zr/5vol%B4C composite via stir casting with the aim of characterizing the microstructure of the resulting composite. For the production of the composite, large B4C particles (larger than 75 μm) with no pre-heating were added to the stirred melt. Reflected-light microscopy, X-ray diffraction, scanning electron microscopy, field-emission scanning electron microscopy, laser particle size analysis, and image analysis using the Clemex software were performed on the cast samples for microstructural analysis and phase detection. The results revealed that as a consequence of thermal shock, B4C particle breakage occurred in the melt. The mechanism proposed for this phenomenon is that the exerted thermal shock in combination with the low thermal shock resistance of B4C and large size of the added B4C particles were the three key parameters responsible for B4C particle breakage. This breakage introduced small particles with sizes less than 10 μm and with no contamination on their surfaces into the melt. The mean particle distance measured via image analysis was approximately 60 μm. The coefficient of variation index, which was used as a measure of particle distribution homogeneity, showed some variations, indicating a relatively homogeneous distribution.

Keywords

metal matrix composites / particle-reinforced composites / boron carbide / casting / thermal shock

Cite this article

Download citation ▾
Mohammad Raei, Masoud Panjepour, Mahmood Meratian. Pseudo-in-situ stir casting: a new method for production of aluminum matrix composites with bimodal-sized B4C reinforcement. International Journal of Minerals, Metallurgy, and Materials, 2016, 23(8): 981-990 DOI:10.1007/s12613-016-1315-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Naher S., Brabazon D., Looney L. Simulation of the stir casting process. J. Mater. Process. Technol., 2003, 143-144, 567.

[2]

Ravi K. R., Sreekumar V. M., Pillai R. M., Mahato C., Amaranathan K. R., Arul kumar R., Pai B. C. Optimization of mixing parameters through a water model for metal matrix composites synthesis. Mater. Des., 2007, 28(3): 871.

[3]

Sornakumar T., Kathiresan M. Machining studies of die cast aluminum alloy-silicon carbide composites. Int. J. Miner. Metall. Mater., 2010, 17(5): 648.

[4]

Su H., Gao W. L., Zhang H., Liu H. B., Lu J., Lu Z. Optimization of stirring parameters through numerical simulation for the preparation of aluminum matrix composite by stir casting process. J. Manuf. Sci. Eng., 2010, 132(6): 061007.

[5]

Shanmughasundaram P., Subramanian R. Influence of magnesium and stirrer model in production of Al–fly ash composites: a Taguchi approach. J. Appl. Sci. Res., 2012, 8(3): 1646.

[6]

Ravindran P., Manisekar K., Narayanasamy R., Narayanasamy P. Tribological behaviour of powder metallurgy-processed aluminium hybrid composites with the addition of graphite solid lubricant. Ceram. Int., 2013, 39(2): 1169.

[7]

Sameezadeh M., Farhangi H., Emamy M. Structural characterization of AA 2024-MoSi2 nanocomposite powders produced by mechanical milling. Int. J. Miner. Metall. Mater., 2013, 20(3): 298.

[8]

Mohammadpour M., Azari Khosroshahi R., Taherzadeh Mousavian R., Brabazon D. Effect of interfacial-active elements addition on the incorporation of micron-sized SiC particles in molten pure aluminum. Ceram. Int., 2014, 40(6): 8323.

[9]

Han Y. Q., Ben L. H., Yao J. J., Wu C. J. Microstructural characterization of Cu/Al composites and effect of cooling rate at the Cu/Al interfacial region. Int. J. Miner. Metall. Mater., 2015, 22(1): 94.

[10]

Tjong S. C., Ma Z. Y. Microstructural and mechanical characteristics of in situ metal matrix composites. Mater. Sci. Eng. R Rep., 2000, 29(3-4): 49.

[11]

Asthana R. Solidification processing of reinforced metals: fabrication techniques. Key Eng. Mater., 1998, 151-152, 6.

[12]

Ibrahim I. A., Mohamed F. A., Lavernia E. J. Particulate reinforced metal matrix composites: a review. J. Mater. Sci., 1991, 26(5): 1137.

[13]

Kerti I., Toptan F. Microstructural variations in cast B4C-reinforced aluminium matrix composites (AMCs). Mater. Lett., 2008, 62(8-9): 1215.

[14]

Stephens J. J., Lucas J. P., Hosking F. M. Cast Al-7 Si composites: Effect of particle type and size on mechanical properties. Scripta Metall., 1988, 22(8): 1307.

[15]

Lucas J. P., Stephens J. J., Greulich F. A. The effect of reinforcement stability on composition redistribution in cast aluminum metal matrix composites. Mater. Sci. Eng. A, 1991, 131(2): 221.

[16]

Askeland D. R., Fulay P. P., Wright W. J. The Science and Engineering of Materials, 2011, Stamford, Cengage Learning

[17]

William J., Callister D. Fundamentals of Materials Science and Engineering, 2001, New York, John Wiley & Sons, Inc.

[18]

Murray G. T. Handbook of Materials Selection for Engineering Applications, 1997, New York, Marcel Dekker, Inc.

[19]

M. Bengisu, Engineering Ceramics, Springer, New York, 2001.

[20]

Pai B. C., Ray S., Prabhakar K. V., Rohatgi P. K. Fabrication of aluminium-alumina (magnesia) particulate composites in foundries using magnesium additions to the melts. Mater. Sci. Eng., 1976, 24(1): 31.

AI Summary AI Mindmap
PDF

144

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/