Precipitation of flaky moolooite and its thermal decomposition

Jin-yu Wu , Kai Huang

International Journal of Minerals, Metallurgy, and Materials ›› 2016, Vol. 23 ›› Issue (8) : 976 -980.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2016, Vol. 23 ›› Issue (8) : 976 -980. DOI: 10.1007/s12613-016-1314-0
Article

Precipitation of flaky moolooite and its thermal decomposition

Author information +
History +
PDF

Abstract

Moolooite particles with flaky morphology were synthesized by mixing dilute solutions of copper nitrate and sodium oxalate in the presence of citric acid. Solution pH value, citric acid concentration, and stirring were found to have large effect on the shape of the precipitated particles. Under the stirring, the radial area of flaky moolooite particles was enlarged and extended to become a thinner and larger flake. This is ascribed to growth promotion caused by the selective absorption of citric ligands onto a particular crystalline surface of the moolooite particles. Flaky shape of the moolooite particles tended to become spherical and disappeared completely when decomposed under an Ar atmosphere, leading to the formation of large porous aggregated particles composed of many tiny nanosized copper crystals.

Keywords

copper oxalate / citric acid / nanocrystals / porous materials / thermal decomposition

Cite this article

Download citation ▾
Jin-yu Wu, Kai Huang. Precipitation of flaky moolooite and its thermal decomposition. International Journal of Minerals, Metallurgy, and Materials, 2016, 23(8): 976-980 DOI:10.1007/s12613-016-1314-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Feng Y., Burkett S. L. Modeling a copper/carbon nanotube composite for applications in electronic packaging. Comput. Mater. Sci., 2015, 97, 1.

[2]

Torres-Vega J. J., Medrano L. R., Landauro C. V., Rojas-Tapia J. Determination of the threshold of nanoparticle behavior: structural and electronic properties study of nano-sized copper. Phys. B, 2014, 436, 74.

[3]

Asad M., Sheikhi M. H., Pourfath M., Moradi M. High sensitive and selective flexible H2S gas sensors based on Cu nanoparticle decorated SWCNTs. Sens. Actuators B, 2015, 210, 1.

[4]

Švarcová S., Cermáková Z., Hradilová J., Bezdicka P., Hradil D. Non-destructive micro-analytical differentiation of copper pigments in paint layers of works of art using laboratory-based techniques. Spectrochim. Acta Part A, 2014, 132, 514.

[5]

Vetten M. A., Yah C. S., Singh T., Gulumian M. Challenges facing sterilization and depyrogenation of nanoparticles: Effects on structural stability and biomedical applications. Nanomed. Nanotechnol. Biol. Med., 2014, 10(7): 1391.

[6]

Manukyan K. V., Cross A., Rouvimov S., Miller J., Mukasyan A. S., Wolf E. E. Low temperature decomposition of hydrous hydrazine over FeNi/Cu nanoparticles. Appl. Catal. A, 2014, 476, 47.

[7]

Liu Q. M., Yasunami T., Kuruda K., Okido M. Preparation of Cu nanoparticles with ascorbic acid by aqueous solution reduction method. Trans. Nonferrous Met. Soc. China, 2012, 22(9): 2198.

[8]

Brush J. R., Magee R. J., O’Connor M. J., Teo S. B., Geue R. J., Snow M. R. Nature of the copper (II) complex formed in the reaction of formaldehyde with bis((S)-serinato)copper(II). J. Am. Chem. Soc., 1973, 95(6): 2034.

[9]

Wang Y. J., Zhou K. G. Preparation of spherical ultrafine copper powder via hydrogen reduction-densification of Mg(OH)2-coated Cu2O powder. Int. J. Miner. Metall. Mater., 2012, 19(11): 1063.

[10]

Akbarzadeh E., Shakib S. E. Comparison of effective parameters for copper powder production via electrorefining and electrowinning cells and improvement using DOE methods. Int. J. Miner. Metall. Mater., 2011, 18(6): 731.

[11]

Nie J. H., Jia C. C., Jia X., Li Y., Zhang Y. F., Liang X. B. Fabrication and thermal conductivity of copper matrix composites reinforced by tungsten-coated carbon nanotubes. Int. J. Miner. Metall. Mater., 2012, 19(5): 446.

[12]

Bekouche K., Wang Z. L., Jia C. C., Liu B. W., Tang Y. Effects of process parameters on nonaqueous gelcasting for copper powder. Int. J. Miner. Metall. Mater., 2016, 23(5): 542.

[13]

Zhou M., Yang H., Ma J. Y., Zhang H. M., Feng W. J., Wei Z. Q., Jiang J. L. Morphology-controlled synthesis of orthorhombic LuFeO3 particles via a hydrothermal route. J. Alloys Compd., 2014, 617, 855.

[14]

Maeda M., Uchiyama D., Al Hossain M. S., Ma Z. Q., Shahabuddin M., Kim J. H. Control of core structure in MgB2 wire through tailoring boron powder. J. Alloys Compd., 2015, 636, 29.

[15]

Dong H. J., Brennan J. D. Tailoring the properties of sub-3µm silica core-shell particles prepared by a multilayer-by-multilayer process. J. Colloid Interface Sci., 2015, 437, 50.

[16]

Bowen P., Pujol O., Jongen N., Lemaître J., Fink A., Stadleman P., Hofmann H. Control of morphology and nanostructure of copper and cobalt oxalates: effect of complexing ions, polymeric additives and molecular weight. Nanoscale, 2010, 2(11): 2470.

[17]

Yu J. G., Tang H., Cheng B., Zhao X. J. Morphological control of calcium oxalate particles in the presence of poly-(styrene-alt-maleic acid). J. Solid State Chem., 2004, 177(10): 3368.

[18]

Yu J. G., Tang H., Cheng B. Influence of PSSS additive and temperature on morphology and phase structures of calcium oxalate. J. Colloid Interface Sci., 2005, 288(2): 407.

[19]

Yu J. G., Qi L. F. Template-free fabrication of hierarchically flower-like tungsten trioxide assemblies with enhanced visible-light-driven photocatalytic activity. J. Hazard. Mater., 2009, 169(1-3): 221.

AI Summary AI Mindmap
PDF

149

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/