Preparation of ultrafine silica from potash feldspar using sodium carbonate roasting technology

Jia-nan Liu , Xiao-yi Shen , Yan Wu , Jun Zhang , Yu-chun Zhai

International Journal of Minerals, Metallurgy, and Materials ›› 2016, Vol. 23 ›› Issue (8) : 966 -975.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2016, Vol. 23 ›› Issue (8) : 966 -975. DOI: 10.1007/s12613-016-1313-1
Article

Preparation of ultrafine silica from potash feldspar using sodium carbonate roasting technology

Author information +
History +
PDF

Abstract

A novel process was developed for the preparation of ultrafine silica from potash feldspar. In the first step, potash feldspar was roasted with Na2CO3 and was followed by leaching using NaOH solution to increase the levels of potassium, sodium, and aluminum in the solid residue. The leaching solution was then carbonated to yield ultrafine silica. The optimized reaction conditions in the roasting process were as follows: an Na2CO3-to-potash feldspar molar ratio of 1.1, a reaction temperature of 875°C, and a reaction time of 1.5 h. Under these conditions, the extraction rate of SiO2 was 98.13%. The optimized carbonation conditions included a final solution pH value of 9.0, a temperature of 40°C, a CO2 flow rate of 6 mL/min, a stirring intensity of 600 r/min, and an ethanol-to-water volume ratio of 1:9. The precipitation rate and granularity of the SiO2 particles were 99.63% and 200 nm, respectively. We confirmed the quality of the obtained ultrafine silica by comparing the recorded indexes with those specified in Chinese National Standard GB 25576―2010.

Keywords

potash feldspar / sodium carbonate / roasting / silica / optimization

Cite this article

Download citation ▾
Jia-nan Liu, Xiao-yi Shen, Yan Wu, Jun Zhang, Yu-chun Zhai. Preparation of ultrafine silica from potash feldspar using sodium carbonate roasting technology. International Journal of Minerals, Metallurgy, and Materials, 2016, 23(8): 966-975 DOI:10.1007/s12613-016-1313-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Meena V. S., Maurya B. R., Verma J. P. Does a rhizospheric microorganism enhance K+ availability in agricultural soils. Microbiol. Res., 2014, 169(5-6): 337.

[2]

Manning D. A. C. Mineral sources of potassium for plant nutrition: a review. Agron. Sustainable Dev., 2010, 30(2): 281.

[3]

Gaied M. E., Gallala W. Beneficiation of feldspar ore for application in the ceramic industry: influence of composition on the physical characteristics. Arab. J. Chem., 2015, 8(2): 186.

[4]

Talbot C. J., Farhadi R., Aftabi P. Potash in salt extruded at Sar Pohl diapir, Southern Iran. Ore Geol. Rev., 2009, 35(3-4): 352.

[5]

Das S. K., Dana K. Differences in densification behaviour of K-and Na-feldspar-containing porcelain bodies. Thermochim. Acta, 2003, 406(1-2): 199.

[6]

Kamseu E., Bakop T., Djangang C., Melo U. C., Hanuskova M., Leonelli C. Porcelain stoneware with pegmatite and nepheline syenite solid solutions: pore size distribution and descriptive microstructure. J. Eur. Ceram. Soc., 2013, 33(13-14): 2775.

[7]

Ferri L. D., Lottici P. P., Vezzalini G. Characterization of alteration phases on potash–lime–silica glass. Corros. Sci., 2014, 80, 434.

[8]

Hynek S. A., Brown F. H., Fernandez D. P. A rapid method for hand picking potassium-rich feldspar from silicic tephra. Quat. Geochronol., 2011, 6(2): 285.

[9]

Ciceri D., Manning D. A. C., Allanore A. Historical and technical developments of potassium resources. Sci. Total Environ., 2015, 502, 590.

[10]

F. K. Crundwell, The mechanism of dissolution of the feldspars: Part I. Dissolution at conditions far from equilibrium, Hydrometallurgy,151 (2015), p. 151.

[11]

Crundwell F. K. The mechanism of dissolution of the feldspars: Part II. Dissolution at conditions close to equilibrium. Hydrometallurgy, 2015, 151, 163.

[12]

Liu Y. J., Peng H. Q., Hu M. Z. Removing iron by magnetic separation from a potash feldspar ore. J. Wuhan Univ. Technol. Mater. Sci. Ed., 2013, 28(2): 362.

[13]

Ezequiel C. S., Enrique T. M., Cesar D., Fumio S. Effects of grinding of the feldspar in the sintering using a planetary ball mill. J. Mater. Process. Technol., 2004, 152(3): 284.

[14]

Feng W. W., Ma H. W. Thermodynamic analysis and experiments of thermal decomposition for potassium feldspar at intermediate temperatures. J. Chin. Ceram. Soc., 2004, 32(7): 789.

[15]

Gallala W., Gaied M. E. Sintering behaviour of feldspar and influence of electric charge effects. Int. J. Miner. Metall. Mater., 2011, 18(2): 132.

[16]

Yuan B., Li C., Liang B., L., Yue H. R., Sheng H. Y., Ye L. P., Xie H. P. Extraction of potassium from K-feldspar via the CaCl2 calcination route. Chin. J. Chem. Eng., 2015, 23(9): 1557.

[17]

Jena S. K., Dhawan N., Rao D. S., Misra P. K., Mishra B. K., Das B. Studies on extraction of potassium values from nepheline syenite. Int. J. Miner. Process., 2014, 133, 13.

[18]

Dana K., Das S., Das S. K. Effect of substitution of fly ash for quartz in triaxial kaolin–quartz–feldspar system. J. Eur. Ceram. Soc., 2004, 24(10-11): 3169.

[19]

Su S. Q., Ma H. W., Chuan X. Y. Hydrothermal decomposition of K-feldspar in KOH–NaOH–H2O medium. Hydrometallurgy, 2015, 156, 47.

[20]

Xu J. C., Ma H. W., Yang J., Li J. H. Preparation of ß-wollastonite glass-ceramics from potassium feldspar tailings. J. Chin. Ceram. Soc., 2003, 31(2): 179.

[21]

Zhang Y., Qu C., Wu J. Q., Lu M., Rao P. G., Liu X. X. Synthesis of leucite from potash feldspar. J. Wuhan Univ. Technol. Mater. Sci. Ed., 2008, 23(4): 452.

[22]

H. Xu and J. S. J. van Deventer, The effect of alkali metals on the formation of geopolymeric gels from alkali-feldspars, Colloids Surf. A, 216 (2003), No. 1-3, p. 27.

[23]

Nie T. M., Ma H. W., Liu H., Zhang P., Qiu M. Y., Wang L. Reactive mechanism of potassium feldspar dissolution under hydrothermal condition. J. Chin. Ceram. Soc., 2006, 34(7): 846.

[24]

Mu W. N., Zhai Y. C. Desiliconization kinetics of nickeliferous laterite ores in molten sodium hydroxide system. Trans. Nonferrous Met. Soc. China, 2010, 20(2): 330.

[25]

Wang R. C., Zhai Y. C., Ning Z. Q., Ma P. H. Kinetics of SiO2 leaching from Al2O3 extracted slag of fly ash with sodium hydroxide solution. Trans. Nonferrous Met. Soc. China, 2014, 24(6): 1928.

[26]

Mu W. N., Zhai Y. C., Liu Y. Extraction of silicon from laterite-nickel ore by molten alkali. Chin. J. Nonferrous Met., 2009, 19(3): 570.

AI Summary AI Mindmap
PDF

107

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/