Microstructure studies of air-plasma-spray-deposited CoNiCrAlY coatings before and after thermal cyclic loading for high-temperature application

Dipak Kumar , K. N. Pandey , Dipak Kumar Das

International Journal of Minerals, Metallurgy, and Materials ›› 2016, Vol. 23 ›› Issue (8) : 934 -942.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2016, Vol. 23 ›› Issue (8) : 934 -942. DOI: 10.1007/s12613-016-1309-x
Article

Microstructure studies of air-plasma-spray-deposited CoNiCrAlY coatings before and after thermal cyclic loading for high-temperature application

Author information +
History +
PDF

Abstract

In the present study, bond-coats for thermal barrier coatings were deposited via air plasma spraying (APS) techniques onto Inconel 800 and Hastelloy C-276 alloy substrates. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and atomic force microscopy (AFM) were used to investigate the phases and microstructure of the as-sprayed, APS-deposited CoNiCrAlY bond-coatings. The aim of this work was to study the suitability of the bond-coat materials for high temperature applications. Confirmation of nanoscale grains of the γ/γ′-phase was obtained by TEM, high-resolution TEM, and AFM. We concluded that these changes result from the plastic deformation of the bond-coat during the deposition, resulting in CoNiCrAlY bond-coatings with excellent thermal cyclic resistance suitable for use in high-temperature applications. Cyclic oxidative stability was observed to also depend on the underlying metallic alloy substrate.

Keywords

thermal barrier coatings / coating structure / plasma spraying / thermal cycle / high-temperature applications / microstructure studies

Cite this article

Download citation ▾
Dipak Kumar, K. N. Pandey, Dipak Kumar Das. Microstructure studies of air-plasma-spray-deposited CoNiCrAlY coatings before and after thermal cyclic loading for high-temperature application. International Journal of Minerals, Metallurgy, and Materials, 2016, 23(8): 934-942 DOI:10.1007/s12613-016-1309-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bose S. High Temperature Coatings, 2007, Amsterdam, Elsevier Butterworth-Heinemann

[2]

Richer P., Yandouzi M., Beauvais L., Jodoin B. Oxidation behaviour of CoNiCrAlY bond coats produced by plasma, HVOF and cold gas dynamic spraying. Surf. Coat. Technol., 2010, 204(24): 3962.

[3]

Li Y., Li C. J., Yang G. J., Xing L. K. Thermal fatigue behavior of thermal barrier coatings with the MCrAlY bond coats by cold spraying and low-pressure plasma spraying. Surf. Coat. Technol., 2010, 205(7): 2225.

[4]

Jiang S. M., Xu C. Z., Li H. Q., Ma J., Gong J., Sun C. High temperature corrosion behaviour of a gradient NiCo-CrAlYSi coating I: Microstructure evolution. Corros. Sci., 2010, 52(5): 1746.

[5]

Achar D. R. G., Munoz-Arroyo R., Singheiser L., Quadakkers W. J. Modelling of phase equilibria in MCrAlY coating systems. Surf. Coat. Technol., 2004, 187(2-3): 272.

[6]

Gao Y., Chen M. C., Shi C. X. Study on EB-PVD zirconia thermal barrier coatings for gas turbine blade protection. Mater. Manuf. Processes, 1999, 14(5): 691.

[7]

Buršík J., Brož P., Popovic J. Microstructure and phase equilibria in Ni-Al-Cr-Co alloys. Intermetallics, 2006, 14(10-11): 1257.

[8]

Mercier D., Kaplin C., Goodall G., Kim G., Brochu M. Parameters influencing the oxidation behavior of cryomilled CoNiCrAlY. Surf. Coat. Technol., 2010, 205(7): 2546.

[9]

Tang F., Ajdelsztajn L., Schoenung J. M. Influence of cryomilling on the morphology and composition of the oxide scales formed on HVOF CoNiCrAlY coatings. Oxid. Met., 2004, 61(314): 219.

[10]

Tang F., Ajdelsztajn L., Kim G. E., Provenzano V., Schoenung J. M. Effects of surface oxidation during HVOF processing on the primary stage oxidation of a CoNiCrAlY coating. Surf. Coat. Technol., 2004, 185(2-3): 228.

[11]

Karaoglanli A. C., Turk A., Ozdemir I., Ustel F. Comparison of oxidation and thermal shock performance of thermal barrier coatings. Mater. Manuf. Processes, 2015, 30(6): 717.

[12]

Saeidi S., Voisey K. T., McCartney D. G. The effect of heat treatment on the oxidation behavior of HVOF and VPS CoNiCrAlY coatings. J. Therm. Spray Technol., 2009, 18(2): 209.

[13]

Chen W. J. Degradation of a TBC with HVOF-CoNiCrAlY bond coat. J. Therm. Spray Technol., 2014, 23(5): 876.

[14]

Okada M., Vassen R., Karger M., Sebold D., Mack D., Jarligo M. O., Bozza F. Deposition and oxidation of oxide-dispersed CoNiCrAlY bond coats. J. Therm. Spray Technol., 2014, 23(1-2): 147.

[15]

Rathod W. S., Khanna A. S., Rathod R. C., Sapate S. G. Wear and corrosion behavior of CoNiCrAlY bond coats. J. Inst. Eng. India Ser. C, 2014, 95(3): 261.

[16]

Wang G. X., Goswami R., Sampath S., Prasad V. Understanding the heat transfer and solidification of plasmasprayed yttria-partially stabilized zirconia coatings. Mater. Manuf. Processes, 2004, 19(2): 259.

[17]

Novak R. C., Matarese A. P., Huston R. P., Scharman A. J., Yonushonis T. M. Development of thick thermal barrier coatings for diesel applications. Mater. Manuf. Processes, 1992, 7(1): 15.

[18]

Wang L., Wang Y., Sun X. G., He J. Q., Pan Z. Y., Wang C. H. Thermal shock behavior of 8YSZ and double-ceramic-layer La2Zr2O7/8YSZ thermal barrier coatings fabricated by atmospheric plasma spraying. Ceram. Int., 2012, 38(5): 3595.

[19]

Jamali H., Mozafarinia R., Razavi R. S., Ahmadi-Pidani R. Comparison of thermal shock resistances of plasmasprayed nanostructured and conventional yttria stabilized zirconia thermal barrier coatings. Ceram. Int., 2012, 38(8): 6705.

[20]

Chen W. R., Wu X., Dudzinski D. Influence of thermal cycle frequency on the TGO growth and cracking behaviors of an APS-TBC. J. Therm. Spray Technol., 2012, 21(6): 1294.

[21]

D. Kumar, K. N. Pandey, and D. K. Das, Characterization of air plasma based 7YSZ aluminum alloys thermal barrier systems for hot zone, Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl., doi: 10. 1177/1464420716640570.

[22]

D. Kumar and K. N. Pandey, Optimization of the process parameters in generic thermal barrier coatings using the Taguchi method and grey relational analysis, Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl., doi: 10. 1177/1464420715602727.

[23]

Kumar D., Pandey K. N. Study on thermal fatigue behavior of plasma sprayed yttria-zirconia thermal barrier coatings (TBCs) systems on aluminum alloy. Int. J Mech. Prod. Eng., 2014, 2(3): 19.

[24]

Kumar D., Pandey K. N., Das D. K. Thermal cyclic resistance behavior of Inconel 800 super alloy substrate with thermal barrier coatings by plasma spraying. Mater. Today Proc., 2015, 2(4-5): 3156.

[25]

Cui Q. Z., Seo S. M., Yoo Y. S., Lu Z., Myoung S. W., Jung Y. G., Paik U. Thermal durability of thermal barrier coatings with bond coat composition in cyclic thermal exposure. Surf. Coat. Technol., 2015, 284, 69.

AI Summary AI Mindmap
PDF

111

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/