Superelasticity of Cu–Ni–Al shape-memory fibers prepared by melt extraction technique

Dong-yue Li , Shu-ling Zhang , Wei-bing Liao , Gui-hong Geng , Yong Zhang

International Journal of Minerals, Metallurgy, and Materials ›› 2016, Vol. 23 ›› Issue (8) : 928 -933.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2016, Vol. 23 ›› Issue (8) : 928 -933. DOI: 10.1007/s12613-016-1308-y
Article

Superelasticity of Cu–Ni–Al shape-memory fibers prepared by melt extraction technique

Author information +
History +
PDF

Abstract

In the paper, a melt extraction method was used to fabricate Cu–4Ni–14Al (wt%) fiber materials with diameters between 50 and 200 μm. The fibers exhibited superelasticity and temperature-induced martensitic transformation. The microstructures and superelasticity behavior of the fibers were studied via scanning electron microscopy (SEM) and a dynamic mechanical analyzer (DMA), respectively. Appropriate heat treatment further improves the plasticity of Cu-based alloys. The serration behavior observed during the loading process is due to the multiple martensite phase transformation.

Keywords

copper nickel aluminum alloys / shape memory effect / melt extraction method / superelasticity

Cite this article

Download citation ▾
Dong-yue Li, Shu-ling Zhang, Wei-bing Liao, Gui-hong Geng, Yong Zhang. Superelasticity of Cu–Ni–Al shape-memory fibers prepared by melt extraction technique. International Journal of Minerals, Metallurgy, and Materials, 2016, 23(8): 928-933 DOI:10.1007/s12613-016-1308-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Otsuka K., Wayman C. M. Shape Memory Materials, 1999

[2]

Ma J., Karaman I. Expanding the repertoire of shape memory alloys. Science, 2010, 327(5972): 1468.

[3]

Cingolani E., Ahlers M., Van Humbeeck J. Stabilization and two-way shape memory effect in Cu-Al-Ni single crystals. Metall. Mater. Trans. A, 1990, 30(3): 493.

[4]

Ishibashi M., Tabata N., Suetake T., Omori T., Sutou Y., Kainuma R., Yamauchi K., Ishida K. A simple method to treat an ingrowing toenail with a shape-memory alloy device. J. Dermatol. Treat., 2008, 19(5): 291.

[5]

Seelecke S., Muller I. Shape memory alloy actuators in smart structures: modeling and simulation. Appl. Mech. Rev., 2004, 57(1): 23.

[6]

Jani J. M., Leary M., Subic A., Gibson M. A. A review of shape memory alloy research, applications and opportunities. Mater. Des., 2014, 56, 1078.

[7]

Recarte V., Pérez-Sáez R. B., Bocanegra E. H., M. L., Juan J. S. Dependence of the martensitic transformation characteristics on concentration in Cu–Al–Ni shape memory alloys. Mater. Sci. Eng. A, 1999, 273-275, 380.

[8]

Otsuka K. Origin of memory effect in Cu-Al-Ni alloy. Jpn. J. Appl. Phys., 1971, 10(5): 571.

[9]

Malard B., Sittner P., Berveiller S., Patoor E. Advances in martensitic transformations in Cu-based shape memory alloys achieved by in situ neutron and synchrotron X-ray diffraction methods. C. R. Phys., 2012, 13(3): 280.

[10]

Xiao Z., Fang M., Li Z., Xiao T., Lei Q. Structure and properties of ductile CuAlMn shape memory alloy synthesized by mechanical alloying and powder metallurgy. Mater. Des., 2014, 58, 451.

[11]

Recarte V., Pérez-Sáez R. B., San Juan J., Bocanegra E. H., L. M. Influence of Al and Ni concentration on the martensitic transformation in Cu-Al-Ni shape-memory alloys. Metall. Mater. Trans. A, 2002, 33(8): 2581.

[12]

Chen Y., Zhang X. X., Dun D. C., Schuh C. A. Shape memory and superelasticity in polycrystalline Cu–Al–Ni microwires. Appl. Phys. Lett., 2009, 95, 171906.

[13]

Zhao Y. Y., Li H., Hao H. Y., Li M., Zhang Y., Liaw P. K. Microwires fabricated by glass-coated melt spinning. Rev. Sci. Instrum., 2013, 84, 075102.

[14]

Ochin P., Dezellus A., Plaindoux P., Pons J., Vermaut P., Portier R., Cesari E. Shape memory thin round wires produced by the in rotating water melt-spinning technique. Acta Mater., 2006, 54(7): 1877.

[15]

Zeller S., Gnauk J. Shape memory behaviour of Cu–Al wires produced by horizontal in-rotating-liquid-spinning. Mater. Sci. Eng. A, 2008, 481-482, 562.

[16]

C. Gómez-Polo, J. I. Pérez-Landazábal, V. Recarte, and V. Sánchez-Alarcos, G. Badini-Confalonieri, and M. Vázquez, Ni–Mn–Ga ferromagnetic shape memory wires, J. Appl. Phys., 107(2010), No. 12, art. No. 123908.

[17]

Izadinia M., Dehghani K. Structure and properties of nanostructured Cu–13.2Al–5.1Ni shape memory alloy produced by melt spinning. Trans. Nonferrous Met. Soc. China, 2011, 21(9): 2037.

[18]

Pourkhorshidi S., Parvin N., Kenevisi M. S., Naeimi M., Khanik H. E. A study on the microstructure and properties of Cubased shape memory alloy produced by hot extrusion of mechanically alloyed powders. Mater. Sci. Eng. A, 2012, 556, 658.

[19]

A. Ibarra, J. San Juan, E. H. Bocanegra, and M. L. Nó, Thermo-mechanical characterization of Cu–Al–Ni shape memory alloys elaborated by powder metallurgy, Mater. Sci. Eng. A, 438-440 (2006), p. 782.

[20]

Tang S. M., Chung C. Y., Liu W. G. Preparation of CuAlNi-based shape memory alloys by mechanical alloying and powder metallurgy method. J. Mater. Process. Technol., 1997, 63(1-3): 307.

[21]

Liao W., Hu J., Zhang Y. Micro forming and deformation behaviors of Zr50.5Cu27.45Ni13.05Al9 amorphous wires. Intermetallics, 2012, 20(1): 82.

[22]

Ueland S. M., Schuh C. A. Superelasticity and fatigue in oligocrystalline shape memory alloy microwires. Acta Mater., 2012, 60(1): 282.

[23]

Bertolino G., Larochette P. A., Castrodeza E. M. Mechanical properties of martensitic Cu–Zn–Al foams in the pseudoelastic regime. Mater. Lett., 2010, 64(13): 1448.

[24]

Zhao Y. Y., Li H., Wang Y. S., Zhang Y., Liaw P. K. Shape memory and superelasticity in amorphous/nanocrystalline Cu–15. 0 atomic percent (at. %) Sn wires. Adv. Eng. Mater., 2014, 16(1): 40.

[25]

Zhang Y., Li M., Wang Y. D., Lin J. P., Dahmen K. A., Wang Z. L., Liaw P. K. Superelasticity and serration behavior in small sized NiMnGa alloys. Adv. Eng. Mater., 2014, 16(8): 955.

[26]

Zhang Y., Wang W. H., Liaw P. K., Wang G., Qiao J. W. Serration and noise behavior in advanced materials. J. Iron Steel Res. Int., 2016, 23(1): 1.

[27]

Zhang Y., Qiao J. W., Liaw P. K. A brief review of high entropy alloys and serration behavior and flow units. J. Iron Steel Res. Int., 2016, 23(1): 2.

[28]

Wang Z., Li J. J., Ren L. W., Zhang Y., Qiao J. W., Wang B. C. Serration behavior in Zr-Cu-Al glass forming systems. J. Iron Steel Res. Int., 2016, 23(1): 42.

AI Summary AI Mindmap
PDF

143

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/