Microstructure and properties of pure iron/copper composite cladding layers on carbon steel

Long Wan , Yong-xian Huang , Shi-xiong Lü , Ti-fang Huang , Zong-liang Lü

International Journal of Minerals, Metallurgy, and Materials ›› 2016, Vol. 23 ›› Issue (8) : 920 -927.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2016, Vol. 23 ›› Issue (8) : 920 -927. DOI: 10.1007/s12613-016-1307-z
Article

Microstructure and properties of pure iron/copper composite cladding layers on carbon steel

Author information +
History +
PDF

Abstract

In the present study, pure iron/copper composite metal cladding was deposited onto carbon steel by tungsten inert gas welding. The study focused on interfacial morphological, microstructural, and mechanical analyses of the composite cladding layers. Iron liquid–solid-phase zones were formed at copper/steel and iron interfaces because of the melting of the steel substrate and iron. Iron concentrated in the copper cladding layer was observed to exhibit belt, globule, and dendrite morphologies. The appearance of iron-rich globules indicated the occurrence of liquid phase separation (LPS) prior to solidification, and iron-rich dendrites crystallized without the occurrence of LPS. The maximum microhardness of the iron/steel interface was lower than that of the copper/steel interface because of the diffusion of elemental carbon. All samples fractured in the cladding layers. Because of a relatively lower strength of the copper layer, a short plateau region appeared when shear movement was from copper to iron.

Keywords

tungsten inert gas welding / metal cladding / pure iron / copper / carbon steel / interfacial properties

Cite this article

Download citation ▾
Long Wan, Yong-xian Huang, Shi-xiong Lü, Ti-fang Huang, Zong-liang Lü. Microstructure and properties of pure iron/copper composite cladding layers on carbon steel. International Journal of Minerals, Metallurgy, and Materials, 2016, 23(8): 920-927 DOI:10.1007/s12613-016-1307-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Gao Y. L., Jie M., Zhang H. B. Influence of laser scanning speed on Cu-Zr-Al composite coatings on Mg alloys. Int. J. Miner. Metall. Mater., 2013, 20(6): 568.

[2]

Jiang H. T., Kang Q., Yan X. Q. A novel diffusion model considering curvature radius at the bonding interface in a titanium/ steel explosive clad plate. Int. J. Miner. Metall. Mater., 2015, 22(9): 956.

[3]

Kokhan L. S., Farunda N. A. Method of predicting the physico-mechanical properties of two-component iron-copper composites. Metallurgist, 2009, 53(7-8): 518.

[4]

Wang K. H., Xu Y. L., Yu J., Wang J. P. Weld method of deposit copper on the surface of steel without penetration. Trans. Chin. Weld. Inst., 2001, 22(6): 69.

[5]

Phanikumar G., Manjini S., Dutta P., Mazumder J., Chattopadhyay K. Characterization of a continuous CO2 laser-welded Fe-Cu dissimilar couple. Metall. Mater. Trans. A, 2005, 36, 2137.

[6]

Wu W., Xu X. L., Xu Y. Z. Study on radial friction welding of typical copper-alloy T3, B5, H96 with steel 35CrMnSi. Ordnance Mater. Sci. Eng., 2006, 29(5): 55.

[7]

Luo J., Xiang J. F., Liu D. J., Li F., Xue K. L. Radial friction welding interface between brass and high carbon steel. J. Mater. Process. Technol., 2012, 212, 385.

[8]

Durgutlu A., Gülenç B., Findik F. Examination of copper/ stainless steel joints formed by explosive welding. Mater. Des., 2005, 26, 497.

[9]

Magnabosco I., Ferro P., Bonollo F., Arnberg L. An investigation of fusion zone microstructures in electron beam welding of copper-stainless steel. Mater. Sci. Eng. A, 2006, 424, 163.

[10]

Yao C. W., Xu B. S., Zhang X. C., Huang J., Fu J., Wu Y. X. Interface microstructure and mechanical properties of laser welding copper-steel dissimilar joint. Opt. Lasers Eng., 2009, 47, 807.

[11]

Mai T. A., Spowage A. C. Characterisation of dissimilar joints in laser welding of steel-kovar, copper-steel and copper -aluminum. Mater. Sci. Eng. A, 2004, 374, 224.

[12]

Li N., Luo J., Zhao P., Sha M., Li S., Zhang J. Microstructure and property of laser treated copper cladding on pure iron. Mater. Res. Innovations, 2014, 18(2): 310.

[13]

Lv S. X., Xu Z. W., Wang H. T., Yang S. Q. Investigation on TIG cladding of copper alloy on steel plate. Sci. Technol. Weld. Joining, 2008, 13(1): 10.

[14]

Shiri S. G., Nazarzadeh M., Sharifitabar M., Afarani M. S. Gas tungsten arc welding of CP-copper to 304 stainless steel using different filler materials. Trans. Nonferrous Metal. Soc. China, 2012, 22, 2937.

[15]

Suresh M. V., Krishna B. V., Venugopal P., Rao K. P. Fusion welding of steel powder metallurgical preforms to wrought copper. Powder Metall., 2004, 47(4): 358.

[16]

Sui G. F., Li J. S., Li H. W., Sun F., Zhang T. B., Fu H. Z. Investigation on the explosive welding mechanism of corrosion-resisting aluminum and stainless steel tubes through finite element simulation and experiments. Int. J. Miner. Metall. Mater., 2012, 19(2): 151.

[17]

Wang J., Cao J., Feng J. C. Microstructure and mechanical performance of depositing CuSi3 Cu alloy onto 30CrMnSi steel plate by the novel consumable and non-consumable electrodes indirect arc welding. Mater. Des., 2010, 31, 2253.

[18]

Zeng D. W., Xie C. S., Wang M. Q. In situ synthesis and characterization of Fep/Cu composite coating on SAE 1045 carbon steel by laser cladding. Mater. Sci. Eng. A, 2003, 344, 357.

[19]

Munitz A., Abbaschian R. Liquid separation in Cu–Co and Cu–Co–Fe alloys solidified at high cooling rates. J. Mater. Sci., 1998, 33, 3639.

[20]

Zeng D. W., Xie C. S., Hu M. L., Wang A. H., Song W. L. In situ laser synthesis of Co/Cu composite coating on copper substrate and its microstructural evolution. Surf. Coat. Technol., 2006, 200, 4065.

[21]

Munitz A. Liquid separation effects in Fe-Cu alloys solidified under different cooling rates. Metall. Trans. B, 1987, 18, 565.

[22]

Zhou S. F., Wu C., Zhang T. Y., Zhong Z. H. Carbon nanotube-and Fep-reinforced copper–matrix composites by laser induction hybrid rapid cladding. Scripta Mater., 2014, 76, 25.

[23]

Ishida T. The interaction of molten copper with solid iron. J. Mater. Sci., 1986, 21, 1171.

[24]

He J., Zhao J. Z., Ratke L. Solidification microstructure and dynamics of metastable phase transformation in undercooled liquid Cu–Fe alloys. Acta Mater., 2006, 54, 1749.

[25]

Zhou S. F., Zhang T. Y., Xiong Z., Dai X. Q., Wu C., Shao Z. S. Investigation of Cu–Fe-based coating produced on copper alloy substrate by laser induction hybrid rapid cladding. Opt. Laser Technol., 2014, 59, 131.

[26]

Yamauchi I., Irie T., Sakaguchi H. Metastable liquid separation in undercooled Fe–Cu and Fe–Cu–Si melts containing a small B concentration and their solidification structure. J. Alloys Compd., 2005, 403(1-2): 211.

[27]

Zeng D. W., Xie C. S., Yung K. C. Investigation of laser surface alloying of copper on high nickel austenitic ductile iron. Mater. Sci. Eng. A, 2002, 333, 223.

[28]

Yang G. R., Huang C. P., Song W. M., Li J., Lu J. J., Ma Y., Hao Y. Microstructure characteristics of Ni/WC composite cladding coatings. Int. J. Miner. Metall. Mater., 2016, 23(2): 184.

AI Summary AI Mindmap
PDF

107

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/