Leaching of vanadium, sodium, and silicon from molten V-Ti-bearing slag obtained from low-grade vanadium-bearing titanomagnetite

Yuan-yuan Zhu , Ling-yun Yi , Wei Zhao , De-sheng Chen , Hong-xin Zhao , Tao Qi

International Journal of Minerals, Metallurgy, and Materials ›› 2016, Vol. 23 ›› Issue (8) : 898 -905.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2016, Vol. 23 ›› Issue (8) : 898 -905. DOI: 10.1007/s12613-016-1305-1
Article

Leaching of vanadium, sodium, and silicon from molten V-Ti-bearing slag obtained from low-grade vanadium-bearing titanomagnetite

Author information +
History +
PDF

Abstract

The water leaching process of vanadium, sodium, and silicon from molten vanadium-titanium-bearing (V-Ti-bearing) slag obtained from low-grade vanadium-bearing titanomagnetite was investigated systematically. The results show that calcium titanate, sodium aluminosilicate, sodium oxide, silicon dioxide and sodium vanadate are the major components of the molten V-Ti-bearing slag. The experimental results indicate that the liquid-solid (L/S) mass ratio significantly affects the leaching process because of the respective solubilities and diffusion rates of the components. A total of 83.8% of vanadium, 72.8% of sodium, and 16.1% of silicon can be leached out via a triple counter-current leaching process under the optimal conditions of a particle size below 0.074 mm, a temperature of 90°C, a leaching time of 20 min, an L/S mass ratio of 4:1, and a stirring speed of 300 r/min. The kinetics of vanadium leaching is well described by an internal diffusion-controlled model and the apparent activation energy is 11.1 kJ/mol. The leaching mechanism of vanadium was also analyzed.

Keywords

titanomagnetite / vanadium metallurgy / leaching kinetics / sodium / silicon / leaching rate

Cite this article

Download citation ▾
Yuan-yuan Zhu, Ling-yun Yi, Wei Zhao, De-sheng Chen, Hong-xin Zhao, Tao Qi. Leaching of vanadium, sodium, and silicon from molten V-Ti-bearing slag obtained from low-grade vanadium-bearing titanomagnetite. International Journal of Minerals, Metallurgy, and Materials, 2016, 23(8): 898-905 DOI:10.1007/s12613-016-1305-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Imtiaz M., Rizwan M. S., Xiong S. L., Li H. L., Ashraf M., Shahzad S. M., Shahzad M., Rizwan M., Tu S. X. Vanadium recent advancements and research prospects: a review. Environ. Int., 2015, 80, 79.

[2]

Moskalyk R. R., Alfantazi A. M. Processing of vanadium: A review. Miner. Eng., 2003, 16(9): 793.

[3]

Chen X. Y., Lan X. Z., Zhang Q. L., Ma H. Z., Zhou J. Leaching vanadium by high concentration sulfuric acid from stone coal. Trans. Nonferrous Met. Soc. China, 2010, 20(1): s123.

[4]

Li X. B., Deng Z. G., Wei C., Li C. X., Li M. T., Fan G., Huang H. Solvent extraction of vanadium from a stone coal acidic leach solution using D2EHPA/TBP: continuous testing. Hydrometallurgy, 2015, 154, 40.

[5]

Pradhan D., Patra A. K., Kim D. J., Chung H. S., Li S. W. A novel sequential process of bioleaching and chemical leaching for dissolving Ni, V, and Mo from spent petroleum refinery catalyst. Hydrometallurgy, 2013, 131-132, 114.

[6]

Nazari E., Rashchi F., Saba M., Mirazimi S. M. J. Simultaneous recovery of vanadium and nickel from power plant fly-ash: optimization of parameters using response surface methodology. Waste Manage., 2014, 34(12): 2687.

[7]

Chen X. L., Cao X. Q., Zou B. L., Gong J., Sun C. Corrosion of lanthanum magnesium hexaaluminate as plasmasprayed coating and as bulk material when exposed to molten V2O5-containing salt. Corros. Sci., 2015, 91, 185.

[8]

Du H. G. Theory of Smelting V and Ti-magnetite by Blast Furnace, 1996, Beijing, Science Press, 45.

[9]

Zhang L., Zhang L. N., Wang M. Y., Li G. Q., Sui Z. T. Recovery of titanium compounds from molten Ti-bearing blast furnace slag under the dynamic oxidation condition. Miner. Eng., 2007, 20(7): 684.

[10]

Lu H. M., Xu J. B., Li Q. Study on smelting reduction of coal-containing pellets of V-Ti bearing beach placers by combined rotary hearth furnace and direct current arc furnace. Energy Technology 2012: Carbon Dioxide Management and Other Technologies, 2012 109.

[11]

Chen D. S., Zhao L. S., Qi T., Hu G. P., Zhao H. X., Li J., Wang L. N. Desilication from titanium-vanadium slag by alkaline leaching. Trans. Nonferrous Met. Soc. China, 2013, 23(10): 3076.

[12]

Zhang G. Q., Zhang T. A., G. Z., Zhang Y., Liu Y., Zhuo L. L. Extraction of vanadium from vanadium slag by high pressure oxidative acid leaching. Int. J. Miner. Metall. Mater., 2015, 22(1): 21.

[13]

Li X. S., Xie B. Extraction of vanadium from high calcium vanadium slag using direct roasting and soda leaching. Int. J. Miner. Metall. Mater., 2012, 19(7): 595.

[14]

Guo Q., Qu J. K., Han B. B., Wei G. Y., Zhang P. Y., Qi T. Dechromization and dealumination kinetics in process of Na2CO3-roasting pretreatment of laterite ores. Trans. Nonferrous Met. Soc. China, 2014, 24(12): 3979.

[15]

Guo Q. Basic Research and Application on Alkali-roasting Activation Pretreatment of Limonitic Laterite Ore, 2011, Beijing, University of Chinese Academy of Sciences, 59.

[16]

Silversmita G., Deplaa D., Poelmana H., Marinb G. B., Gryse R. D. Determination of the V2p XPS binding energies for different vanadium oxidation states (V5+ to V0+). J. Electron. Spectrosc. Relat. Phenom., 2004, 135(2-3): 167.

[17]

Song W. C., Li H., Zhu F. X., Li K., Zheng Q. Extraction of vanadium from molten vanadium bearing slag by oxidation with pure oxygen in the presence of CaO. Trans. Nonferrous Met. Soc. China, 2014, 24(8): 2687.

AI Summary AI Mindmap
PDF

115

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/