An improved implementable process for the synthesis of zeolite 4A from bauxite tailings and its Cr3+ removal capacity

Peng-cheng Lei , Xian-jiang Shen , Yang Li , Min Guo , Mei Zhang

International Journal of Minerals, Metallurgy, and Materials ›› 2016, Vol. 23 ›› Issue (7) : 850 -857.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2016, Vol. 23 ›› Issue (7) : 850 -857. DOI: 10.1007/s12613-016-1300-6
Article

An improved implementable process for the synthesis of zeolite 4A from bauxite tailings and its Cr3+ removal capacity

Author information +
History +
PDF

Abstract

A simple and practical method for the synthesis of zeolite 4A from bauxite tailings is presented in this paper. Systematic investigations were carried out regarding the capacity of zeolite 4A to remove Cr(III) from aqueous solutions with relatively low initial concentrations of Cr(III) (5–100 mg·L−1). It is found that the new method is extremely cost-effective and can significantly contribute in decreasing environmental pollution caused by the dumping of bauxite tailings. The Cr(III) removal capacity highly depends on the initial pH value and concentration of Cr(III) in the solution. The maximum removal capacity of Cr(III) was evaluated to be 85.1 mg·g−1 for zeolite 4A, measured at an initial pH value of 4 and an initial Cr(III) concentration of 5 mg·L−1. This approach enables a higher removal capacity at lower concentrations of Cr(III), which is a clear advantage over the chemical precipitation method. The removal mechanism of Cr(III) by zeolite 4A was examined. The results suggest that both ion exchange and the surface adsorption-crystallization reaction are critical steps. These two steps collectively resulted in the high removal capacity of zeolite 4A to remove Cr(III).

Keywords

bauxite / tailings / zeolite / trivalent chromium / wastewater treatment

Cite this article

Download citation ▾
Peng-cheng Lei, Xian-jiang Shen, Yang Li, Min Guo, Mei Zhang. An improved implementable process for the synthesis of zeolite 4A from bauxite tailings and its Cr3+ removal capacity. International Journal of Minerals, Metallurgy, and Materials, 2016, 23(7): 850-857 DOI:10.1007/s12613-016-1300-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Fendorf S. E. Surface reactions of chromium in soils and waters. Geoderma, 1995, 67(1-2): 55.

[2]

Buerge I. J., Hug S. J. Influence of mineral surfaces on chromium(VI) reduction by iron(II). Environ. Sci. Technol., 1999, 33(23): 4285.

[3]

Hu T., Li Y. Y. Advance in Cr-containing wastewater treatments. Pollut. Control Technol., 2005, 18(4): 5.

[4]

Wang D. J., He X. Y. Progress of the chromic wastewater treatment processes. Anhui Chem. Ind., 2007, 33(1): 12.

[5]

Zhang H. Q., Zhou K. G., Wu Y. D. Removal of Cr6+ and Mn2+ from electrolytic manganese wastewater. Nonferrous Met. Sci. Eng., 2014, 5(3): 9.

[6]

Guo N. B., Jia M. C., Dong X. T. Treatment of chromium- containing radioactive wastewater by redox-precipitation ?ultrafiltration method. J. Wuhan Univ. Technol. Transp. Sci. Eng., 2013, 37(1): 196.

[7]

Erdem E., Karapinar N., Donat R. The removal of heavy metal cations by natural zeolites. J. Colloid Interface Sci., 2004, 280(2): 309.

[8]

Wang S. B., Peng Y. L. Natural zeolites as effective adsorbents in water and wastewater treatment. Chem. Eng. J., 2010, 156(1): 11.

[9]

Mousavi S. F., Jafari M., Kazemimoghadam M., Mohammadi T. Template free crystallization of zeolite Rho via hydrothermal synthesis: effects of synthesis time, synthesis temperature, water content and alkalinity. Ceram. Int., 2013, 39(6): 7149.

[10]

Hasan F., Singh R., Li G., Zhao D. Y., Webley P. A. Direct synthesis of hierarchical LTA zeolite via a low crystallization and growth rate technique in presence of cetyltrimethylammonium bromide. J. Colloid Interface Sci., 2012, 382(1): 1.

[11]

Kosanovic C., Subotic B., Ristic A. Kinetic analysis of temperature-induced transformation of zeolite 4A to low-carnegieite. Mater. Chem. Phys., 2004, 86(2-3): 390.

[12]

Arean C. O., Palomino G. T., Carayol M. R. L., Pulido A., Rubeš M., Bludský O., Nachtigall P. Hydrogen adsorption on the zeolite Ca-A: DFT and FT-IR investigation. Chem. Phys. Lett., 2009, 477(1-3): 139.

[13]

Damjanovic L., Rakic V., Rac V., Stošic D., Auroux A. The investigation of phenol removal from aqueous solutions by zeolites as solid adsorbents. J. Hazard. Mater., 2010, 184(1-3): 477.

[14]

Khan I. A., Loughlin K. F. Kinetics of sorption in deactivated zeolite crystal adsorbents. Comput. Chem. Eng., 2003, 27(5): 689.

[15]

Baldansuren A., Eichel R. A., Roduner E. Nitrogen oxide reaction with six-atom silver clusters supported on LTA zeolite. Phys. Chem. Chem. Phys, 2009, 11(31): 6664.

[16]

Sherry H. S., Walton H. F. The ion-exchange properties of zeolites. II. Ion exchange in the synthetic zeolite Linde 4A. J. Phys. Chem., 1967, 71(5): 1457.

[17]

Ackley M. W., Rege S. U., Saxena H. Application of natural zeolites in the purification and separation of gases. Microporous Mesoporous Mater., 2003, 61(1-3): 25.

[18]

Vareltzis P., Kikkinides E. S., Georgiadis M. C. On the optimization of gas separation processes using zeolite membranes. Chem. Eng. Res. Des., 2003, 81(5): 525.

[19]

Du T., Liu L. Y., Xiao P., Che S., wang H. M. Preparation of zeolite NaA for CO2 capture from nickel laterite residue. Int. J. Miner. Metall. Mater., 2014, 21(8): 820.

[20]

Aguado S., Bergeret G., Daniel C., Farrusseng D. Absolute molecular sieve separation of ethylene/ethane mixtures with silver zeolite A. J. Am. Chem. Soc., 2012, 134(36): 14635.

[21]

Hui K. S., Chao C. Y. H. Pure, single phase, high crystalline, chamfered-edge zeolite 4A synthesized from coal fly ash for use as a builder in detergents. J. Hazard. Mater., 2006, 137(1): 401.

[22]

Upadek H., Smulders E., Poethkow J. Laundry detergent additive containing zeolite, polycarboxylate, and perborate. Zeolites, 1991, 11(1): 90.

[23]

Covarrubias C., Arriagada R., Yáñez J., García R., Angélica M., Barros S. D., Arroyo P., Sousa-Aguiar E. F. Removal of chromium(III) from tannery effluents, using a system of packed columns of zeolite and activated carbon. J. Chem. Technol. Biotechnol., 2005, 80(8): 899.

[24]

Lu Q. H., Hu Y. H. Synthesis of aluminum tri-polyphosphate anticorrosion pigment from bauxite tailings. Trans. Nonferrous Met. Soc. China, 2012, 22(22): 483.

[25]

Ma D. Y., Wang Z. D., Guo M., Zhang M., Liu J. B. Feasible conversion of solid waste bauxite tailings into highly crystalline 4A zeolite with valuable application. Waste Manage, 2014, 34(11): 2365.

[26]

Lao-Luque C., Solé M., Gamisans X., Valderrama C., Dorado A. D. Characterization of chromium(III) removal from aqueous solutions by an immature coal (leonardite). Toward a better understanding of the phenomena involved. Clean Technol. Environ. Policy, 2014, 16(1): 127.

[27]

Rai D., Sass B. M., Moore D. A. Chromium(III) hydrolysis constants and solubility of chromium(III) hydroxide. Inorg. Chem., 1987, 26(3): 345.

[28]

Hui K. S., Chao C. Y. H., Kot S. C. Removal of mixed heavy metal ions in wastewater by zeolite 4A and residual products from recycled coal fly ash. J. Hazard. Mater., 2005, 127(1-3): 89.

[29]

American Public Health Association (APHA), Standard Methods for the Examination of Water and Wastewater, Washington, D. C., 1995.

[30]

Gal I. J., Jankovic O., Malcic S., Radovanov P., Todorovic M. Ion-exchange equilibria of synthetic 4A zeolite with Ni2+, CO2+, Cd2+ and Zn2+ ions. Trans. Faraday Soc., 1971, 67, 999.

[31]

Heo N. H., Cruz-Patalinghug W., Seff K. Crystal structure of zeolite 4A ion exchanged to the limit of its stability with nickel(II). J. Phys. Chem., 1986, 90(17): 3931.

AI Summary AI Mindmap
PDF

101

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/