Fabrication of nanoporous silver by de-alloying Cu-Zr-Ag amorphous alloys

Hui Wang , Shang-gang Xiao , Tao Zhang

International Journal of Minerals, Metallurgy, and Materials ›› 2016, Vol. 23 ›› Issue (7) : 835 -843.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2016, Vol. 23 ›› Issue (7) : 835 -843. DOI: 10.1007/s12613-016-1298-9
Article

Fabrication of nanoporous silver by de-alloying Cu-Zr-Ag amorphous alloys

Author information +
History +
PDF

Abstract

Nanoporous silver (NPS) with a ligament size ranging from 15 to 40 nm was fabricated by de-alloying (Cu50Zr50)100-xAg x (x = 10at%, 20at%, 30at%, and 40at%) amorphous ribbons in a mixed aqueous solution of hydrofluoric (HF) acid and nitric acid under free corrosion conditions. Nanoporous silver ligaments and pore sizes were able to be fine-tuned through tailoring the chemical composition, corrosion conditions, and de-alloying time. The ligament size increases with an increase in Ag content and de-alloying time, but decreases with an increase in HF concentration. This phenomenon may be attributed to the dissolution of Zr/Cu and the diffusion, aggregation, nucleation, and recrystallization of Ag, leading to an oriented attachment of adjacent nanocrystals as revealed by TEM analysis.

Keywords

amorphous alloys / corrosion / silver / nanopores / fabrication

Cite this article

Download citation ▾
Hui Wang, Shang-gang Xiao, Tao Zhang. Fabrication of nanoporous silver by de-alloying Cu-Zr-Ag amorphous alloys. International Journal of Minerals, Metallurgy, and Materials, 2016, 23(7): 835-843 DOI:10.1007/s12613-016-1298-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Xu C., Xu X., Su J., Ding Y. Research on unsupported nanoporous gold catalyst for CO oxidation. J. Catal., 2007, 252, 243.

[2]

Detsi E., Sellès M. S., Onck P. R., De Hosson J. Th. M. Nanoporous silver as electrochemical actuator. Scripta Mater., 2013, 69, 195.

[3]

Joo S. H., Choi S. J., Oh I., Kwak J., Liu Z., Terasaki O., Ryoo R. Ordered nanoporous arrays of carbon supporting high dispersions of platinum nanoparticles. Nature, 2001, 412, 169.

[4]

Ke X., Li Z., Gan L., Zhao J., Cui G., Kellogg W., Matera D., Higgins D., Wu G. Three-dimensional nanoporous Au films as high-efficiency enzyme-free electrochemical sensors. Electrochim. Acta, 2015, 170, 337.

[5]

Zeng Z., Zhou H., Long X., Guo E., Wang X. Electrodeposition of hierarchical manganese oxide on metal nanoparticles decorated nanoporous gold with enhanced supercapacitor performance. J. Alloys Compd., 2015, 632, 376.

[6]

Attard G. S., Bartlett P. N., Coleman N. R. B., Elliott J. M., Owen J. R., Wang J. H. Mesoporous platinum films from lyotropic liquid crystalline phases. Science, 1997, 278(5339): 838.

[7]

Qi Z., Zhao C., Wang X., Lin J., Shao W., Zhang Z., Bian X. Formation and characterization of monolithic nanoporous copper by chemical dealloying of Al-Cu alloys. J. Phys. Chem. C, 2009, 113(16): 6694.

[8]

Li J., Jiang H., Yu N., Xu C., Geng H. Fabrication and characterization of bulk nanoporous copper by dealloying Al–Cu alloy slices. Corros. Sci., 2015, 90, 216.

[9]

Liu W., Chen L., Yan J., Li N., Shi S., Zhang S. Dealloying solution dependence of fabrication, microstructure and porosity of hierarchical structured nanoporous copper ribbons. Corros. Sci., 2015, 94, 114.

[10]

Kim M., Ha W. J., Anh J. W., Kim H. S., Park S. W., Lee D. Y. Fabrication of nanoporous gold thin films on silicon substrate by multilayer deposition of Au and Ag. J. Alloys Compd., 2009, 484, 28.

[11]

Hakamada M., Mabuchi M. Fabrication of nanoporous palladium by dealloying and its thermal coarsening. J. Alloys Compd., 2009, 479, 326.

[12]

Qiu H. J., Peng L., Li X., Xu H. T., Wang Y. Using corrosion to fabricate various nanoporous metal structures. Corros. Sci., 2015, 92, 16.

[13]

Li G., Song X., Sun Z., Yang S., Ding B., Yang S., Yang Z., Wang F. Nanoporous Ag prepared from the melt-spun Cu-Ag alloys. Solid State Sci., 2011, 13, 1379.

[14]

Zhang C., Wang X., Sun J., Kou T., Zhang Z. Synthesis and antibacterial properties of magnetically recyclable nanoporous silver/Fe3O4 nanocomposites through one-step dealloying. CrystEngComm, 2013, 15, 3965.

[15]

Song T. T., Gao Y. L., Zhang Z. H., Zhai Q. J. Microstructure and phase evolution during the dealloying of bi-phase Al-Ag alloy. Corros. Sci., 2013, 68, 256.

[16]

Sun X., Lin L., Li Z., Zhang Z., Feng J. Novel Ag?Cu substrates for surface-enhanced Raman scattering. Mater. Lett., 2009, 63, 2306.

[17]

Li R., Liu X. J., Wang H., Wu Y., Chu X. M., Lu Z. P. Nanoporous silver with tunable pore characteristics and superior surface enhanced Raman scattering. Corros. Sci., 2014, 84, 159.

[18]

Shi C., Cheng M., Qu Z., Bao X. Investigation on the catalytic roles of silver species in the selective catalytic reduction of NOx with methane. Appl. Catal. B, 2004, 51, 171.

[19]

Erlebacher J., Aziz M. J., Karma A., Dimitrov N., Sieradzki K. Evolution of nanoporosity in dealloying. Nature, 2001, 410, 450.

[20]

Ding Y., Kim Y. J., Erlebacher J. Nanoporous gold leaf: “ancient technology”/advanced material. Adv. Mater., 2004, 16(21): 1897.

[21]

Wang S. S., Wang Y. L., Wu Y. D., Wang T., Hui X. D. High plastic Zr–Cu–Fe–Al–Nb bulk metallic glasses for biomedical applications. Int. J. Miner. Metall. Mater., 2015, 22(6): 648.

[22]

Zhao Y. F., Zhu J., Chang L., Song J. G., Chen X. H., Hui X. D. Influence of Cu content on the mechanical properties and corrosion resistance of Mg-Zn-Ca bulk metallic glasses. Int. J. Miner. Metall. Mater., 2014, 21(5): 487.

[23]

Luo X., Li R., Liu Z., Huang L., Shi M., Xu T., Zhang T. Three-dimensional nanoporous copper with high surface area by dealloying Mg–Cu–Y metallic glasses. Mater. Lett., 2012, 76, 96.

[24]

Abe H., Sato K., Nishikawa H., Takemoto T., Fukuhara M., Inoue A. Dealloying of Cu–Zr–Ti bulk metallic glass in hydrofluoric acid solution. Mater. Trans., 2009, 50(6): 1255.

[25]

Zhang M., Junior A. M. J., Pang S. J., Zhang T., Yavari A. R. Fabrication of nanoporous silver with open pores. Scripta Mater., 2015, 100, 21.

[26]

Phys. Rev. Lett., 2006, 97(035504)

[27]

Erlebacher J. An atomistic description of dealloying porosity evolution, the critical potential, and rate-limiting behavior. J. Electrochem. Soc., 2004, 151(10): C614.

[28]

Barsuk D., Zhang M., Panagiotopoulos N. T., Jorge A. M., Georgarakis K., Yavari A. R. Fabrication of nanoporous copper surface by leaching of chill-zone Cu–Zr–Hf alloys. Scripta Mater., 2015, 104, 64.

[29]

Tseng W. J., Shen P. Y., Chen S. Y. Defect generation of rutile-type SnO2 nanocondensates: imperfect oriented attachment and phase transformation. J. Solid State Chem., 2006, 179, 1237.

[30]

Scaglione F., Celegato F., Rizzi P., Battezzati L. A comparison of de-alloying crystalline and amorphous multicomponent Au alloys. Intermetallics, 2015, 66, 82.

[31]

Penn R. L., Banfield J. F. Imperfect oriented attachment: dislocation generation in defect-free nanocrystals. Science, 1998, 281(5379): 969.

[32]

Li D. S., Nielsen M. H., Lee J. R. I., Frandsen C., Banfield J. F., Yoreo J. J. D. Direction-specific interactions control crystal growth by oriented attachment. Science, 2012, 336(6084): 1014.

[33]

Zhang Q., Liu S. J., Yu S. H. Recent advances in oriented attachment growth and synthesis of functional materials: concept, evidence, mechanism, and future. J. Mater. Chem., 2009, 19, 191.

[34]

Tsai M. H., Chen S. Y., Shen P. Imperfect oriented attachment: accretion and defect generation of nanosize rutile condensates. Nano Lett., 2004, 4(7): 1197.

AI Summary AI Mindmap
PDF

104

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/