Effects of different friction stir welding conditions on the microstructure and mechanical properties of copper plates

Ali Alavi Nia , Ali Shirazi

International Journal of Minerals, Metallurgy, and Materials ›› 2016, Vol. 23 ›› Issue (7) : 799 -809.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2016, Vol. 23 ›› Issue (7) : 799 -809. DOI: 10.1007/s12613-016-1294-0
Article

Effects of different friction stir welding conditions on the microstructure and mechanical properties of copper plates

Author information +
History +
PDF

Abstract

Friction stir welding is a new and innovative welding method used to fuse materials. In this welding method, the heat generated by friction and plastic flow causes significant changes in the microstructure of the material, which leads to local changes in the mechanical properties of the weld. In this study, the effects of various welding parameters such as the rotational and traverse speeds of the tool on the microstructural and mechanical properties of copper plates were investigated; additionally, Charpy tests were performed on copper plates for the first time. Also, the effect of the number of welding passes on the aforementioned properties has not been investigated in previous studies. The results indicated that better welds with superior properties are produced when less heat is transferred to the workpiece during the welding process. It was also found that although the properties of the stir zone improved with an increasing number of weld passes, the properties of its weakest zone, the heat-affected zone, deteriorated.

Keywords

copper / friction stir welding / mechanical properties / microstructure

Cite this article

Download citation ▾
Ali Alavi Nia, Ali Shirazi. Effects of different friction stir welding conditions on the microstructure and mechanical properties of copper plates. International Journal of Minerals, Metallurgy, and Materials, 2016, 23(7): 799-809 DOI:10.1007/s12613-016-1294-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Lombard H., Hattingh D. G., Steuwer A., James M. N. Effect of process parameters on the residual stresses in AA5083-H321 friction stir welds. Mater. Sci. Eng. A, 2009, 501, 119.

[2]

Woo W., Choo H., Brown D. W., Feng Z., Liaw P. K. Angular distortion and through-thickness residual stress distribution in the friction-stir processed 6061-T6 aluminum alloy. Mater. Sci. Eng. A, 2006, 437, 64.

[3]

Steuwer A., Peel M. J., Withers P. J. Dissimilar friction stir welds in AA5083–AA6082: The effect of process parameters on residual stress. Mater. Sci. Eng. A, 2006, 441, 187.

[4]

Qin H. L., Zhang H., Sun D. T., Zhuang Q. Y. Corrosion behavior of friction-stir-welding joints of 2A14-T6 aluminum alloy. Int. J. Miner. Metall. Mater., 2015, 22(6): 627.

[5]

Wang D., Shen J., Wang L. Z. Effects of the types of overlap on the mechanical properties of FSSW welded AZ series magnesium alloy joints. Int. J. Miner. Metall. Mater., 2012, 19(3): 231.

[6]

Sun Y. F., Fujii H. The effect of SiC particles on the microstructure and mechanical properties of friction stir welded pure copper joints. Mater. Sci. Eng. A, 2011, 528, 5470.

[7]

Bagheri A., Azdast T., Doniavi A. An experimental study on mechanical properties of friction stir welded ABS sheets. Mater. Des., 2013, 43, 402.

[8]

Sun Y. F., Fujii H. Investigation of the welding parameter dependent microstructure and mechanical properties of friction stir welded pure copper. Mater. Sci. Eng. A, 2010, 527, 6879.

[9]

K. Surekha and A. Els-Botes, Development of high strength, high conductivity copper by friction stir processing, Mater. Des., 32(2011), p. 911.

[10]

Khodaverdizadeh H., Mahmoudi A., Heidarzadeh A., Nazari E. Effect of friction stir welding (FSW) parameters on strain hardening behavior of pure copper joints. Mater. Des., 2012, 35, 330.

[11]

Shi P., Wang Q., Xu Y., Luo W. Corrosion behavior of bulk nanocrystalline copper in ammonia solution. Mater. Lett., 2011, 65, 857.

[12]

Zhang X., Pehkonen S. O., Kocherginsky N., Ellis G. A. Copper corrosion in mildly alkaline water with the disinfectant monochloramine. Corros. Sci., 2002, 44, 2507.

[13]

Shim J. J., Kim J. G. Copper corrosion in potable water distribution systems: influence of copper products on the corrosion behavior. Mater. Lett., 2004, 58, 2002.

[14]

Boulay N., Edwards M. Role of temperature, chlorine, and organic matter in copper corrosion by-product release in soft water. Water Res., 2001, 35, 683.

[15]

Pehkonen S. O., Palit A., Zhang X. Effect of Specific water quality parameters on copper corrosion. Corrosion, 2002, 58, 156.

[16]

Berlouis L. E. A., Mamman D. A., Azpuru I. G. The electrochemical behaviour of copper in alkaline solutions containing fluoride, studied by in situ ellipsometry. Surf. Sci., 1998, 408, 173.

[17]

Alfantazi A. M., Ahmed T. M., Tromans D. Corrosion behavior of copper alloys in chloride media. Mater. Des., 2009, 30, 2425.

[18]

Lee W. B., Jung S. B. The joint properties of copper by friction stir welding. Mater. Lett., 2004, 58, 1041.

[19]

Shen J. J., Liu H. J., Cui F. Effect of welding speed on microstructure and mechanical properties of friction stir welded copper. Mater. Des., 2010, 31, 3937.

[20]

Xie G. M., Ma Z. Y., Geng L. Development of a fine-grained microstructure and the properties of a nugget zone in friction stir welded pure copper. Scripta Mater., 2007, 57, 73.

[21]

Khodaverdizadeh H., Heidarzadeh A., Saeid T. Effect of tool pin profile on microstructure and mechanical properties of friction stir welded pure copper joints. Mater. Des., 2013, 45, 265.

[22]

Xu N., Ueji R., Morisada Y., Fujii H. Modification of mechanical properties of friction stir welded Cu joint by additional liquid CO2 cooling. Mater. Des., 2014, 56, 20.

[23]

Lakshminarayanan A. K., Balasubramanian V., Salahuddin M. Microstructure, tensile and impact toughness properties of friction stir welded mild steel. J. Iron Steel Res. Int., 2010, 17, 68.

[24]

Mishra R. S., Ma Z. Y. Friction stir welding and processing. Mater. Sci. Eng. R, 2005, 50, 1.

[25]

Alavi Nia A., Omidvar H., Nourbakhsh S. H. Effects of an overlapping multi-pass friction stir process and rapid cooling on the mechanical properties and microstructure of AZ31 magnesium alloy. Mater. Des., 2014, 58, 298.

[26]

Zhao Y., Wang Q., Chen H., Yan K. Microstructure and mechanical properties of spray formed 7055 aluminum alloy by underwater friction stir welding. Mater. Des., 2014, 56, 725.

[27]

Vigh L. G., Okura I. Fatigue behaviour of friction stir welded aluminium bridge deck segment. Mater. Des., 2013, 44, 119.

[28]

Nandan R., DebRoy T., Bhadeshia H. K. D. H. Recent advances in friction-stir welding: process, weldment structure and properties. Prog. Mater. Sci., 2008, 53, 980.

[29]

Franchim A. S., Fernandez F. F., Travessa D. N. Microstructural aspects and mechanical properties of friction stir welded AA2024-T3 aluminium alloy sheet. Mater. Des., 2011, 32, 4684.

[30]

Yau Y. H., Hussain A., Lalwani R. K., Chan H. K., Hakimi N. Temperature distribution study during the friction stir welding process of Al2024-T3 aluminum alloy. Int. J. Miner. Metall. Mater., 2013, 20(8): 779.

AI Summary AI Mindmap
PDF

133

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/