Production and characterization of high porosity porous Fe-Cr-C alloys by the space holder leaching technique

Da-rong Tian , Yu-hua Pang , Liang Yu , Li Sun

International Journal of Minerals, Metallurgy, and Materials ›› 2016, Vol. 23 ›› Issue (7) : 793 -798.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2016, Vol. 23 ›› Issue (7) : 793 -798. DOI: 10.1007/s12613-016-1293-1
Article

Production and characterization of high porosity porous Fe-Cr-C alloys by the space holder leaching technique

Author information +
History +
PDF

Abstract

Spherical carbamide particles were employed to produce porous Fe-Cr-C alloy with high porosity and large aperture via the space-holder leaching technique. A series of porous samples were prepared by regulating the processing parameters, which included the carbamide content and the compaction pressure. The pore characteristics and compression properties of the produced samples were investigated. The samples were characterized by scanning electron microscopy, image analysis, and compression tests. The results showed that the macro-porosity and the mean pore size were in the ranges 40.4%–82.4% and 0.6–1.5 mm, respectively. The compressive strength varied between 25.38 MPa and 127.9 MPa, and was observed to decrease with increasing total porosity.

Keywords

porous metal / powder metallurgy / cellular manufacturing / porosity / compressive strength

Cite this article

Download citation ▾
Da-rong Tian, Yu-hua Pang, Liang Yu, Li Sun. Production and characterization of high porosity porous Fe-Cr-C alloys by the space holder leaching technique. International Journal of Minerals, Metallurgy, and Materials, 2016, 23(7): 793-798 DOI:10.1007/s12613-016-1293-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Li D. S., Zhang Y. P., Xiong Z. P., Zhang X. P. Preparation of NiTi shape memory alloys with low density and high strength and their superelasticity. Acta Metall Sin., 2008, 44(8): 995.

[2]

Tang H. P., Wang J. Z., Zhu J. L., Ao Q. B., Wang J. Y., Yang B. J., Li Y. N. Fractal dimension of pore-structure of porous metal materials made by stainless steel powder. Powder Technol., 2012, 217, 383.

[3]

Liu X. H., Huang H. Y., Xie J. X. Effect of strain rate on the compressive deformation behaviors of lotus-type porous copper. Int. J. Miner. Metall. Mater., 2014, 21(7): 687.

[4]

Bafti H., Habibolahzadeh A. Production of aluminum foam by spherical carbamide space holder technique-processing parameters. Mater. Des., 2010, 31(9): 4122.

[5]

Khademzadeh S., Parvin N., Bariani P. F., Mazzucato F. Effects of micro laser sintering process parameters on quality of nickel-titanium single tracks and thin walls. Met. Mater. Int., 2015, 21(6): 1081.

[6]

Wang J. J., Hao J. J., Guo Z. M., Wang S. Plasma preparation and low-temperature sintering of spherical TiC–Fe composite powder. Int. J. Miner. Metall. Mater., 2015, 22(12): 1328.

[7]

Park C., Nutt S. R. Effects of process parameters on steel foam synthesis. Mater. Sci. Eng. A, 2001, 297, 62.

[8]

Xu Z. W., Jia C. C., Kuang C. J., Qu X. H. Fabrication and sintering behavior of high-nitrogen nickel-free stainless steels by metal injection molding. Int. J. Miner. Metall. Mater., 2010, 17(4): 423.

[9]

Vendra L., Neville B., Rabiei A. Fatigue in aluminum–steel and steel–steel composite foams. Mater. Sci. Eng. A, 2009, 517, 146.

[10]

Bekoz N., Oktay E. High temperature mechanical properties of low alloy steel foams produced by powder metallurgy. Mater. Des., 2014, 53, 482.

[11]

Hassani A., Habibolahzadeh A., Bafti H. Production of graded aluminum foams via powder space holder technique. Mater. Des., 2012, 40, 510.

[12]

Wang Y. L., Zhang F. Calculation of porous copper’s porosity by SEM method. Initiators Pyrotech., 2012 49.

[13]

Niu W. J., Bai C. G., Qiu G. B., Wang Q., Wen L. Y., Chen D. F., Dong L. Y. Preparation and characterization of porous titanium using space-holder technique. Rare Met., 2009, 28(4): 338.

[14]

Surace R., De Filippis L. A. C., Ludovico A. D., Boghetich G. Influence of processing parameters on aluminium foam produced by space holder technique. Mater. Des., 2009, 30(6): 1878.

[15]

Kotan G., Bor A. S. Production and characterization of high porosity Ti-6Al-4V foam by space holder technique in powder metallurgy. Turkish J. Eng. Environ. Sci., 2007, 31(3): 149.

[16]

Torres Y., Rodriguez J. A., Arias S., Echeverry M., Robledo S., Amigo V., Pavón J. J. Processing, characterization and biological testing of porous titanium obtained by space-holder technique. J. Mater. Sci., 2012, 47(18): 6565.

[17]

Ruan J. M., Huang P. Y. Principle on Powder Metallurgy, 2012, Beijing, Mechanical Industry Press, 181.

AI Summary AI Mindmap
PDF

112

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/